

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 5

Abstract:— Face mask detection has become

crucial for public health and safety, requiring

robust and efficient deep learning models for

real-time identification. This study evaluates

an existing CNN-based approach for face

mask detection and introduces three newly

implemented CNNs (CNN1, CNN2, CNN3)

designed for binary classification (mask, no

mask). These models improve upon dataset

sizes, preprocessing techniques, and model

configurations. The proposed models utilize

Kaggle and GitHub datasets, RGB images,

and structured train-validation-test splits. The

dataset is downloaded, extracted, and

preprocessed in Google Colab, leveraging

GPU acceleration for efficient model training.

Among the three models, CNN3, which

incorporates three convolutional layers, three

max-pooling layers, and data augmentation,

achieves the best generalization performance,

with a validation accuracy of 95.65%. A

comparative analysis highlights CNN3’s

superiority in dataset scalability, accuracy,

and loss minimization, making it the most

optimal model for face mask detection.

Keywords:— Face Mask Detection,

Convolutional Neural Network (CNN), Binary

Classification, Deep Learning, Data

Augmentation, Validation Accuracy

1. INTRODUCTION

Face mask detection has become a

critical application in public health and safety,

especially during pandemics. The existing

work used a small dataset of 2,229 images

(grayscale, resized to 100×100 pixels) with

limited preprocessing and a basic CNN

architecture. In contrast, CNN1 and CNN2

utilized the Kaggle Face Mask Dataset (7,553

RGB images, resized to 128×128×3), while

CNN3 employed the GitHub Build-A-Face-

Mask-Detector Dataset (10,013 RGB images,

resized to 70×70×3). CNN3 incorporated data

augmentation to improve generalization. The

architectures of the proposed CNNs were

progressively enhanced, with CNN3

integrating three convolutional layers, three

max-pooling layers, and a fine-tuned learning

rate of 0.0001, compared to the simpler

structures in the existing model. Performance

evaluation demonstrated that CNN3 achieved

the highest validation accuracy as 96.90%,

with the lowest validation loss 0.0865,

surpassing both CNN1, CNN2, and the

existing model. Additionally, CNN3 exhibited

minimal overfitting due to its effective use of

data augmentation and a structured train-

validation-test split. This work highlights the

significance of dataset size, advanced

preprocessing techniques, and optimized

neural network architectures in achieving

robust and accurate face mask detection

systems.

A. Digital Image Processing

 Binary Image - A binary image

is one that consists of pixels that can

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Volume 13 Issue 2 | June 2025 ISSN: 2320-9984 (Online)

Deep Learning-Based Face Mask Detection Using Optimized CNN

Pragati Tiwari
M.Tech. Research Scholar

Computer Science and Engineering

Takshshila Institute of Engineering and Technology

Jabalpur (M.P.), India

Email: pragat2699@gmail.com

Swati Soni
Assistant Professor

Department of Computer Science and Engineering

Takshshila Institute of Engineering and Technology

Jabalpur (M.P.), India

Email: swatisoni@takshshila.org

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 6

have one of exactly two colors,

usually black and white. Binary

images are also called bi-level or two

-level, Pixelart made of two colours

is often referred to as 1-Bit or 1bit.

This means that each pixel is stored

as a single bit—i.e., a 0 Black or 1

White.

 Gray Scale Image - A grayscale (or

graylevel) image is simply one in

which the only colours are shades of

gray.

 Color image - A color image is a

digital representation of a scene or

object that includes color

information. In digital form, color

images are typically composed of

pixels, with each pixel representing a

tiny portion of the image and

containing information about its

color.

In most color image formats, each pixel

is represented by three color channels: red,

green, and blue (RGB). The combination of

different intensities of these three primary

colors creates a wide range of colors. For

example, mixing full intensity of red and

green creates yellow; while mixing full

intensity of red and blue creates magenta, and

so on.

Color images are commonly used in

various applications, including photography,

computer graphics, digital art, medical

imaging, and scientific visualization. They

allow for the accurate representation of the

visual world, providing rich detail and

information about the colors present in a

scene.

Color images are represented using the

RGB color model, where each pixel is

composed of three-color channels: red, green,

and blue. Each color channel typically

requires 8 bits of information to represent 256

levels of intensity (0-255). Therefore, RGB

color images commonly have 24 bits per pixel

(8 bits per channel × 3 channels), but higher

color depths such as 32 bits per pixel (where

an additional alpha channel for transparency

is included) are also used.

Figure 1: RGB Image

Figure 2: Color Image Input to Convolutional Neural

Network

ANN is not appropriate for picture

datasets since they require the conversion of 2

-dimensional images into 1-dimensional

vectors, which makes image classification

issues more challenging when using ANN. As

a result, there are exponentially more

trainable parameters. It requires processing

and storage power to increase trainable

parameters. In other words, it would be

expensive and time consuming.

B. CNN (Convolutional Neural Networks)

A Convolution Neural Network or CNN

is a type of artificial neural network, which is

widely used for image/object recognition and

classification. For image processing and

recognition applications, a Convolution

Neural Network (CNN) is a sort of deep

learning technique that works well. It is made

up of multiple layers, including convolution

layers, pooling layers, and fully connected

layers. In order to teach CNNs to identify

patterns and features linked to certain objects

or classes, a sizable dataset of labelled images

is used.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 7

Sequence of CNN Layers Input =>

Convolution => Relu => Fully Connected =>

Softmax.

Key components of a Convolutional Neural

Network include:

Convolutional Layers: These layers

apply convolutional operations to input

images, using filters (also known as kernels)

to detect features such as edges, textures, and

more complex patterns. Convolutional

operations help preserve the spatial

relationships between pixels.

The essential part of a CNN is its

convolutional layers, which are where

elements like edges, textures, and forms are

extracted from the input image by applying

filters.

After the convolutional layers' output is

processed through pooling layers, the feature

maps are down-sampled to lower the spatial

dimensions while keeping the most crucial

data. One or more fully connected layers are

then applied to the output of the pooling

layers in order to classify or forecast the

image.

Kernal in a CNN is a small matrix of

weights that slides over the input data (such as

an image), performs element-wise

multiplication with the part of the input it is

currently on, and then sums up all the results

into a single output pixel. An image kernel is

a small matrix used to apply effects like the

ones you might find in Photoshop or Gimp,

such as blurring, sharpening, outlining or

embossing. They're also used in machine

learning for 'feature extraction', a technique

for determining the most important portions

of an image. In this context the process is

referred to more generally as “convolution”.

The matrix on the left contains numbers,

between 0 and 255, which each correspond to

the brightness of one pixel in a picture of a

face.

Figure 3: Gray Scale Image Matrix

for each 3x3 block of pixels in the

image on the left, we multiply each pixel by

the corresponding entry of the kernel and then

take the sum. That sum becomes a new pixel

in the image on the right.

Figure 4: Image – Kernel Product Output

Stride: It determines how many squares

or pixels our filters skip when they move

across the image, from left to right and from

top to bottom.

Figure 5: Convolution with Stride

Padding Layer: In convolutional neural

networks, the term “padding” refers to the

number of pixels that the CNN kernel adds to

an image during processing. Every additional

pixel added to a CNN with padding set to 0

will have a value of none. The creation of a

convolutional neural network requires

padding. A small, filtered image will result

from shrinking the original and using a neural

network with hundreds of layers.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 8

Feature Map: is the output of a

convolution layer representing specific

features in the input image or feature map.

During the forward pass of a CNN, the input

image is convolved with one or more filters to

produce multiple feature maps. Each feature

map corresponds to a specific filter and

represents the response of that filter to the

input image.

Figure 6: Convoluted Feature Map in CNN

Pooling: By pooling layers down

sampling the input's spatial dimensions, the

number of network parameters and

computational complexity are decreased. A

typical pooling operation called “max

pooling” chooses the largest value among a

set of adjacent pixels. Sliding a two-

dimensional filter over each feature map

channel and summarising the features that fall

inside the filter's coverage area constitute the

pooling operation.

Types of Pooling Layers: Max

Pooling, Min Pooling, Average Pooling

Max Polling: The process of pooling

that chooses the maximum element from the

area of the feature map that the filter covers is

called max pooling. As a result, the feature

map that results from the max-pooling layer

would include the most noticeable features

from the prior feature map.

Figure 7: Max Polling

Average Polling: By using average

pooling, the average of the items in the

feature map area that the filter covers are

calculated. Therefore, average pooling

provides the average of the features present in

a patch, whereas max pooling provides the

most noticeable feature in a specific patch of

the feature map.

Figure 8: Average Polling

Dimensionality reduction (Pooling

Layer Advantages): The primary benefit of

pooling layers is their assistance in lowering

the feature maps' spatial dimensions.

Information loss (Pooling Layer Drawbacks):

One of the primary drawbacks of pooling

layers is their tendency to remove some

information from the input feature maps,

which may be crucial for the task of

classification or regression at the end.

Fully Connected or Dense Layer, These

layers are responsible for making predictions

based on the high-level features learned by

the previous layers. They connect every

neuron in one layer to every neuron in the

next layer. The dense layer is a simple Layer

of neurons in which each neuron receives

input from all the neurons of the previous

layer, thus called as dense. The dense layer is

used to classify images based on output from

convolution layers.

Activation Functions: Rectified Linear

Unit (ReLU) and other non-linear activation

functions add non-linearity to the model,

enabling it to discover more intricate links in

the data. A mathematical formula that is

applied to each neuron's output in a neural

network is called an activation function. Its

goal is to provide non-linearity to the model

so that the network can learn and depict more

intricate correlations and patterns in the data.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 9

A neural network would be reduced to a linear

model without activation functions, unable to

perform tasks like image recognition, natural

language processing, or any other issue

requiring the capture of complex structures in

the input data.

ReLU Activation Function - Non-linear

activation functions, such as Rectified Linear

Unit (ReLU), introduce non-linearity to the

model, allowing it to learn more complex

relationships in the data.

Figure 9: ReLU Activation Function

Softmax Activation Function -

SoftMax is an activation function which

converts the inputs and output of the last layer

of your neural network into a discrete

probability distribution over the target classes.

Commonly used in the output layer for multi-

class classification problems.

Batch Normalization is a technique used

in neural networks, including Convolutional

Neural Networks (CNNs), to normalize the

activations of a previous layer at each batch.

It helps in reducing internal covariate shift,

which refers to the change in the distribution

of network activations due to parameter

updates during training.

In batch normalization, two parameters

are learned and applied to each feature map:

1. Scale (γ): This parameter scales the

normalized value.

2. Shift (β): This parameter shifts the

normalized value.

Dropout: The dropout layer is a mask

that preserves all other neurons unaltered

while nullifying particular neurons'

contributions to the following layer.

Dropout layers do not affect the number

of parameters in a neural network. Dropout is

a technique used only during the training

phase to improve generalization and prevent

overfitting, but it does not change the

architecture of the network itself, nor does it

alter the number of weights and biases.

Dropout layers in our network

architecture affects how the network learns by

temporarily ignoring certain neurons during

training. However, dropout layers do not

change the number of parameters (weights

and biases) in the network. The parameters

are determined by the dense (fully connected)

layers and other learnable layers in the

network.

Figure 10: Dropouts Leyer

Parameters: Trainable parameters-

These are parameters that will be updated

during training via backpropagation.

Non-trainable Parameters - These

parameters are not updated during training,

such as the parameters in the batch

normalization layers. MaxPooling2D layers

do not have trainable parameters.

The Flatten layer in this model bridges

the gap between the convolutional/pooling

layers and the dense layers by converting the

multi-dimensional tensor output of the

pooling layer into a 1D vector, preparing the

data for the subsequent fully connected layers.

2. LITERATURE REVIEW

The face mask detection approach by

Das et al. [1] utilized two distinct datasets:

Dataset 1 with 1,376 images (690 with masks,

686 without), featuring primarily front-facing,

single-face images with white masks, and

Dataset 2 with 853 images from Kaggle,

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 10

offering greater variability in head orientation,

multiple faces, and mask colors.

Preprocessing involved the use of TensorFlow

and Keras for model development and image

reshaping, while OpenCV handled resizing

and grayscale conversion to reduce

computational complexity. Images were

normalized to 100×100 pixels, converted to

grayscale, and labeled as 0 (with mask) or 1

(without mask). A Sequential CNN

architecture was implemented, consisting of

convolutional layers with ReLU activation,

max-pool ing layers , dropout for

regularization, a dense layer, and a softmax

output layer for binary classification. The

model was trained using the Adam optimizer

and categorical crossentropy loss, with

accuracy as the evaluation metric. Data was

split into 90% for training and 10% for

testing, with 20% of the training data set aside

for validation. Trained over 20 epochs, the

model achieved an accuracy of 95.77% on

Dataset 1 and 94.58% on Dataset 2, with the

latter showing slightly lower performance due

to increased variability in image

characteristics. Training and validation loss

curves were analyzed to evaluate model

performance and generalization [1].

Figure 11: Algorithmfor face mask detection [1]

Saini et al. (2022) proposed a real-time

face mask detection system using deep

learning, designed to monitor mask

compliance in public spaces during the

COVID-19 pandemic. The system leverages

OpenCV, TensorFlow, and Keras, and is built

on the lightweight MobileNetV2 architecture

with Single Shot Detector (SSD) for efficient

and accurate face detection. The model was

trained on a dataset of 3,835 images—1,916

with masks and 1,919 without—sourced from

Kaggle and RMFD. The dataset was split into

75% training and 25% testing. The network

architecture includes a 128-unit fully

connected layer with ReLU, 0.5 dropout, and

a softmax output for binary classification.

Key preprocessing included noise reduction,

histogram normalization, and HAAR Cascade

for face localization. Principal Component

Analysis (PCA)[2] and Sobel edge detection

were used for feature enhancement and

dimensionality reduction. The system

achieved 99% accuracy and was optimized for

low-resource devices like Raspberry Pi and

Google Coral, ensuring portability. A mobile

application, CheckYourMask[2], was also

proposed for self-monitoring. While effective,

the study notes the need for larger, more

diverse datasets and improved handling of

partial or incorrect mask usage in future work.

Kavitha et al. (2022) proposed, a CNN

method which has been used which obtains

less accuracy. To improve the accuracy, the

MTCNN Deep Learning algorithm is applied

for this detection. It is divided into three

stages: P-Net, R-Net, and O-Net. The pre-

trained models InceptionV3 and VGG 16 are

used in this algorithm for detection. it is

observed that dataset is collected then, splited

into train and test and MTCNN is fine-tuned

with pre-trained models and dataset is loaded

with pre trained models and finally, masks are

detected. In this, 0 indicates without mask, 1

indicates with mask and 2 indicates wearing

mask improperly. The available dataset

contains 853 images which has been taken

from Kaggle to train the deep learning

architecture. Then it's divided into two parts:

train and test. The dataset has been taken as

multiple person in single image. 90% of the

images are used for training, with the

remaining 10% used for testing. The persons

face has been identified using bounding box

regression. Then, MTCNN algorithm has

been applied for identifying with and without

mask persons. Applying Several pre-trained

models include Mobile Net, InceptionV3,

ImageNet, VGG-16. Fine tuning the model

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 11

MTCNN -MTCNN, a prominent technique,

addresses numerous problems of face

identification, such as significant posture

changes, severe human emotions, and varying

illumination conditions. Here, MTCNN has

been imported for detecting face masks. It

contains three stages namely P-Net(Personal

Network), R Net(Refine Network) and O-Net

(Output Network).[3]

Figure 12: Performance of MTCNN [3] with VGG16

offers better accuracy

Anirudh et al. (2022) utilized the

Kaggle medical mask dataset[4], which

contains 10,000 images evenly divided

between “With Mask” and “Without Mask”

classes, accompanied by XML annotation

files. The dataset was split into 8,000 training

and 2,000 testing/validation images, with

input images standardized to 224×224×3

dimensions. The study compared three

classification models: a Convolutional Neural

Network (CNN), a Support Vector Machine

(SVM), and a hybrid Principal Component

Analysis with SVM (PCA+SVM).

The CNN model , f ea tu r ing

convolutional and pooling layers followed by

dense layers and a softmax classifier,

achieved the highest accuracy of 98.6%. The

SVM, configured with a polynomial kernel

a n d r e g u l a r i z a t i o n p a r a m e t e r

C=100C=100C=100, attained 95% accuracy,

while the PCA+SVM model, which reduced

feature dimensionality before classification,

resulted in a lower accuracy of 90.5%—likely

due to loss of information during

dimensionality reduction. All models were

evaluated using 5-fold cross-validation to

ensure reliability. The authors concluded that

CNN outperformed the other models,

demonstrating superior capability in

hierarchical feature learning for face mask

detection.

In paper Abbas et al. (2023), face

recognition (FR) using a Convolutional mixer

(AFR-Conv) algorithm [5] is developed to

handle face occlusion problems. A novel AFR

-Conv architecture is designed by assigning

priority-based weight to the different face

patches along with residual connections and

an AdaBoost classifier for automatically

recognizing human faces. The AFR-Conv also

leverages the strengths of pre-trained CNNs

by extracting features using ResNet-50,

Inception-v3, and DenseNet-161. The

AdaBoost classifier combines these features’

weighted votes to predict labels for testing

images. To develop this system, we use the

data augmen tation method to enhance the

number of datasets using human face images.

The AFR-Conv method is then used to extract

robust features from images. Finally, to

recognize human identity, an AdaBoost

classifier is utilized. For the training and

evaluation of the AFR-Conv model, a set of

face images is collected from online data

sources. The experimental results of the AFR-

Conv approach are presented in terms of

precision (PR), recall (RE), detection

accuracy (DA), and F1-score metrics.

Particularly, the proposed approach attains

95.5% PR, 97.6% RE, 97.5% DA, and 98.5%

of F1-score on 8500 face images. The

experimental results show that our proposed

scheme outperforms advanced methods for

face classification.[5]

Sethi et al. (2021),To contribute towards

communal health, this paperaims to devise a

highly accurate and real-time technique that

can efficiently detect non-mask faces in

public and thus, enforcing to wear mask. The

proposed technique is ensemble of one-stage

and two-stage detectors to achieve low

inference time and high accuracy. We start

with ResNet50 as a baseline and applied the

concept of transfer learning to fuse high-level

semantic information in multiple feature

maps. In addition, we also propose a

bounding box trans formation to improve

localization performance during mask

detection. The experiment is conducted with

three popular baseline models viz. ResNet50,

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 12

AlexNet and MobileNet. We explored the

possibility of these models to plug-in with the

proposed model so that highly accurate results

can be achieved in less inference time. It is

observed that the proposed technique achieves

high accuracy (98.2%) when implemented

with ResNet50. Be sides, the proposed model

generates 11.07% and 6.44% higher precision

and recall in mask detection when compared

to the recent public baseline model published

as RetinaFaceMask detector. The outstanding

perfor mance of the proposed model is highly

suitable for video surveillance devices.[6]

1. Masked Face Detection Datasets

 These datasets are used for detecting

and recognizing faces, particularly

under conditions where faces might

be partially or fully occluded, such as

by masks.

 FDDB (Face Detection Data Set

and Benchmark): A dataset with

face images for generic face

detection but does not include

masked faces.

 MALF (Multi-Attribute Labelled

Faces): Includes faces with

occlusions but does not explicitly

focus on masked faces.

 CelebA (CelebFaces Attributes

Dataset): A large dataset of celebrity

faces with various attributes but

without masked images.

 WIDERFACE: A dataset containing

a diverse range of face images,

including occluded ones.

2. Face Masked Datasets

These datasets specifically contain

masked face images, making them useful for

tasks like face recognition with masks and

masked face detection.

 MAFA (Masked Face Dataset): One

of the largest datasets containing

masked face images, specifically

designed for masked face detection.

 RMFRD (Real-world Masked Face

Recognition Dataset): Focuses on

real-world masked face images,

useful for face recognition tasks.

 SMFRD (Simulated Masked Face

Recognition Dataset): A dataset with

simulated masked faces to study the

impact of face masks on recognition

systems.[6]

Figure 13: Different Categories of Datasets.

Sheikh et al. (2023) proposed a Rapid

Real-Time Face Mask Detection System

(RRFMDS)[7] designed to monitor face mask

compliance during the COVID-19 pandemic.

The system uses a Single Shot MultiBox

Detector (SSD) for face detection and a fine-

tuned MobileNetV2 model for face mask

classification. It is lightweight and compatible

with existing CCTV infrastructure, enabling

real-time detection with an average frame

processing time of 0.142 seconds. The model

was trained on a custom dataset of 14,535

images categorized into three classes: with

mask, without mask, and incorrectly worn

mask. The dataset includes various scenarios

such as masks worn on the chin, covering

only the mouth, and both simple and complex

face masks or occluded faces. The system

achieved an accuracy of 99.15% on training

data and 97.81% on testing data. The dataset

is publicly available on Kaggle.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 13

Figure 14: Models used for each component

Figure 15: Performance of RRFMDS[7]

Hussain et al. (2022) proposed an

automated face mask detection system to

combat the spread of COVID-19 using deep

learning techniques. The study employed a

Deep Convolutional Neural Network (DCNN)

[8] and a MobileNetV2-based transfer

learning approach for effective mask

detection. The models were evaluated on two

datasets: a custom dataset with 2,500 real-

world images (dataset-1) and another sourced

from PyImageSearch Reader Prajna Bhandary

and other online sources (dataset-2).

MobileNetV2 achieved 98% and 99%

accuracy on dataset-1 and dataset-2,

respectively, outperforming the DCNN

model, which yielded 97% accuracy on both

datasets. The results indicate that

MobileNetV2 is a highly effective model for

real-world face mask detection tasks.

Figure 16: Dataset Used

Figure 17: The performance of MobileNetV2 for the

test datasets

Figure 18: The performance of DCNN for the test

datasets.

Kumar Shukla et al. (2022) presented a

deep learning-based face mask detection

system aimed at promoting safety in public

and industrial settings during the COVID-19

pandemic. Utilizing Python, OpenCV, and

Keras, the system performs real-time face

detection through webcam feeds. The model,

based on Convolutional Neural Networks

(CNN), was trained on a dataset containing

1,915 images of individuals with and without

masks, using 80% for training and 20% for

testing. The architecture includes multiple

convolutional and dense layers to extract

features and classify mask usage. Despite

achieving promising results, the system faces

limitations in recognizing faces obscured by

hands and struggles with detection in crowded

environments. Additionally, effective

deployment at scale would require extensive

CCTV infrastructure and human monitoring.

[9]

Figure 19: Model Performance

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 14

3. PROBLEM STATEMENT

A. Existing work [1] has the following

limitations:

 Limited Dataset Size: Uses only

1,376 + 853 images from two

datasets, which may not be diverse

enough.

 Lower Image Resolution: Uses

100×100 grayscale images,

potentially missing important color

and texture features.

 Basic Preprocessing: Only grayscale

conversion, normalization, and

resizing used, without augmentation

techniques for better generalization.

 Limited Network Depth: Uses only

two convolutional layers with 200

and 100 filters.

 Overfitting Risk Not Addressed:

No explicit mention of dropout or

other regularization techniques.

 Unknown Test Performance: No

test accuracy reported, making it

unclear how well the model

generalizes.

B. Existing work [2] has the following

limitations:

1. Dataset-Related Limitations

 Limited Dataset Size: Only 3,835

images, which may not be sufficient

for training a robust deep learning

model, especially for real-world

variations (e.g., different face

orientations, lighting conditions, and

occlusions).

 Imbalanced Data Collection: The

dataset is sourced from multiple

sources (Kaggle and RMFD), which

may introduce biases due to

inconsistent image quality, variations

in labeling standards, and dataset-

specific features.

 Lack of Augmentation: No mention

of data augmentation techniques

(such as rotation, flipping, zooming,

or contrast changes) to improve

model generalization.

2. Hardware & Computational Constraints

 Lack of GPU/TPU Utilization: The

work does not specify using high-

performance hardware (GPU/TPU),

which may limit training efficiency

and real-time processing capability,

e s p ec i a l l y f o r l a r ge - s ca l e

deployment.

 Memory Usage Not Addressed: The

model reports “99% memory usage,”

but no mention of optimizations like

model pruning, quantization, or

efficient deployment strategies for

low-resource environments.

3. Preprocessing & Feature Extraction

Concerns

 Over-Reliance on PCA: PCA

reduces dimensionality but may

remove essential features critical for

distinguishing between masked and

unmasked faces. It may not be the

best choice for deep learning-based

feature extraction.

 Sobel Edge Detection in CNN:

While edge detection can help

highlight boundaries, using it directly

in a CNN pipeline may not be

necessary since CNNs naturally learn

edge features in early convolutional

layers.

 Face Localization Using HAAR

Cascade: The HAAR Cascade

classifier is outdated compared to

modern deep-learning-based face

detection techniques like MTCNN or

RetinaFace, which are more robust to

variations in lighting, pose, and

occlusion.

4. Methodology & Model Limitations

 Overfitting Risk:

The training accuracy is reported as

100%, which strongly suggests

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 15

overfitting. The validation/test

accuracy is not mentioned explicitly,

making it unclear how well the

model generalizes.

Dropout (0.5) is applied, but

additional regularization techniques

like L2 weight decay or batch

normalization could further help

mitigate overfitting.

 MobileNetV2 as Backbone:

MobileNetV2 is efficient but may

not be the best choice for fine-

grained mask detection, as it is

d e s i g n e d f o r l i g h t w e i g h t

applications.

Alternative models like EfficientNet

or ResNet could be explored for

better feature extraction while

maintaining efficiency.

 Limited Training Strategy: No

details on hyperparameter tuning

(e.g., learning rate schedules,

optimizer choices, or batch sizes),

which are crucial for improving

model performance.

5. Lack of Comprehensive Evaluation

 No Mention of Loss Analysis: Loss

values (both training and validation)

are not provided, making it difficult

to assess convergence and overfitting

risks.

 No Generalization Metrics: The

model is tested on training data but

lacks evaluations on unseen test

datasets or real-world scenarios.

Metrics like Precision, Recall, F1-

score, and AUC-ROC should be

included for better performance

assessment.

 No Comparison with Baseline

Models: The model's performance is

not compared wi th o ther

architectures (e.g. , ResNet,

EfficientNet, or traditional ML

models like SVM or Random

Forest).

6. Deployment & Real-World Challenges

 No Mention of Real-Time

Performance: While it states that the

model can process video streams, no

details are given on FPS (frames per

second), latency, or computational

efficiency in real-world deployment.

 Embedded System Constraints Not

Addressed: The study mentions

suitability for embedded systems but

does not discuss optimizations like

model quantization (e.g., TensorFlow

Lite) for edge devices.

 Limited Robustness Against

Variations:

 No details on handling occlusions

(e.g., sunglasses, scarves).

No discussion of ethnic diversity, age

range, or different mask types (e.g., cloth

masks, surgical masks).

C. Existing work [3] has the following

limitations:

 Dataset Size – The dataset contains

only 853 images, which may not be

sufficient for robust generalization.

 Multiple Faces in a Single Image –

The dataset includes multiple persons

per image, increasing the complexity

of detection and classification.

 Fine-Tuning Challenges – Even

though MTCNN is adjusted (fine-

tuned) with pre-trained models, it

still struggles with issues like poor

lighting, different face angles, and

facial expressions, which can reduce

detection accuracy.

 Bounding Box Limitations – The

method uses a box to detect faces,

but sometimes it may not perfectly

capture the face, which can lead to

errors in identifying whether a person

is wearing a mask or not.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 16

 Pre-Trained Model Dependency –
The accuracy of the model depends a

lot on the pre-trained models (like

InceptionV3, VGG16, etc.), and it

may be worth testing other models to

see if they work better for this task.

4. PROPOSED WORK

The proposed work is to develop,

compare, and optimize different CNN

architectures for Face Mask Detection while

exploring various deep learning techniques.

The key objectives are:

1. Performance Comparison of CNN

Architectures

 CNN1, CNN2, and CNN3 follow

different architectures and training

strategies.

 The goal is to compare their

accuracy, loss, training time, and

efficiency.

 Understanding how architectural

changes (e.g., layer depth, dropout,

op t imizer se t t ings) impact

performance.

2. Exploring Data Augmentation &

Preprocessing

 CNN3 specifically introduces image

augmentation (rotation, width shift,

height shift, zoom, and flipping) to

improve generalization.

 CNN1 and CNN2 rely on basic

normalization and resizing.

 The objective is to assess how data

augmentation affects model

performance and robustness.

3. Hyperparameter Tuning and Optimization

 CNN1 and CNN2 use different batch

sizes, epochs, and dropout values.

 CNN3 uses a lower learning rate

(0.0001) with Adam optimizer to

improve stability.

 The goal is to experiment with these

hyperparameters and determine the

best-performing configuration.

4. Real-world Application & Deployment

Readiness

 The models are trained to classify

people as “With Mask” or “Without

Mask.”

 The final trained model can be

deployed in security systems (e.g.,

public places, workplaces) to ensure

compliance with mask mandates.

 The ability to take new images as

input and make real-time predictions

is critical for practical applications.

5. Efficient Model Training Using GPU

 The project includes using Google

Colab with a T4 GPU for faster

training.

 Learning how to use the Kaggle API

to import large datasets efficiently.

 Understanding how dataset size and

GPU acceleration impact training

time.

6. Understanding Transferability and

Scalability

A. CNN1 – CNN2 DATA COLLECTION

1. Face Mask Detection Using Convolutional

Neural Network

 Collecting Kaggle Dataset (Contains

2Set of Images People Wearing

Mask and People Not Wearing

Mask)

 Performed Binary Classification

 Image Preprocessing

 Train Test Splitting

 Feed Data to CNN

 Evaluate CNN Model

 Build a Predicting System

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 17

2. For Deep Learning Project We Get GPU

Access so that Training Happen Quickly.

 Runtime -> Change Runtime Type ->

T4 GPU. If you run your file without

GPU it will run by CPU, it will take

lot time.

3. When the Size of the Image Dataset is very

Large.

 Instead of downloading the complete

dataset, import the dataset from API

 You need to add API Token, it is

basically json file downloaded

 (Kaggle-> Setting-> API -> Create

New Token -> Download Kaggle.

Json File)

 Steps to Download, Set Up, and

Extract a Dataset from Kaggle in

Google Colab

 Install the Kaggle package to

enable access to Kaggle

datasets.

 Upload the Kaggle API key

(kaggle.json) to authenticate

access to Kaggle.

 Configure the Kaggle API by

placing the API key in the

correct directory and setting

appropriate permissions.

 Download the face mask

dataset from Kaggle using its

unique identifier.

 Check if the dataset already

exists to avoid redundant

downloads unless a redownload

is necessary.

 Extract the downloaded ZIP

file to make the dataset

accessible.

 Verify the extracted dataset to

ensure it is ready for machine

learning or deep learning tasks

like image classification and

face mask detection.

B. CNN-1 ALGORITHM

BEGIN

1. Dataset Preparation:

 Download dataset from Kaggle

(containing “Mask” and “No Mask”

images).

 Import necessary dependencies

(TensorFlow, Keras, OpenCV,

NumPy,Matplotlib, PIL, etc.).

 Extract images from dataset.

 Assign labels:

 If “Mask”, label = 1

 If “No Mask”, label = 0

 Convert images to RGB format and

resize to 128x128 pixels.

 Convert images and labels to NumPy

arrays.

2. Data Preprocessing:

 Split dataset into training (80%) and

testing (20%) subsets.

 Normalize or Scale Down the pixel

values by dividing each pixel by 255.

3. Model Construction:

 Define a Sequential CNN model.

 Add convolutional layers with ReLU

activation.

 Add max pooling layers to reduce

dimensions.

 Apply dropout layers to prevent

overfitting.

 Flatten the output and add dense

(fully connected) layer with

activation='sigmoid'

 Compile the model using:

 Optimizer: Adam

 Loss Function: Sparse

Categorical Cross entropy

 Metric: Accuracy

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 18

4. Model Training:

 Train CNN model using training

data.

 Set batch size = 64 and epochs = 20.

 Monitor accuracy and loss on

validation data.

5. Model Evaluation and Saving:

 Evaluate the model performance

using test data.

 Save the trained model for

deployment.

6. Model Deployment and Prediction System:

 Load the trained model.

 Process new images:

 Convert to RGB format and

resize to 128x128 pixels.

 Normalize pixel values.

 Predict class using trained

model.

 Display results:

 IF predicted class = 1 THEN

Output “Mask Detected”

 ELSE Output “No Mask

Detected”

END

Figure 20: CNN – 1 LAYERS

Figure 21:CNN – 1 ARCHITECTURE

C. CNN-2 ALGORITHM

BEGIN

1. Import Required Libraries

 Import tensorflow, keras, cv2,

numpy, and matplotlib.pyplot.

2. Define CNN Model

 Create a Sequential model.

 Add Conv2D layer with 32 filters,

kernel size (3×3), activation ReLU,

and input shape (128,128,3).

 Add MaxPooling2D layer with pool

size (2×2).

 Add another Conv2D layer with 64

filters, kernel size (3×3), activation

ReLU.

 Add another MaxPooling2D layer

with pool size (2×2).

 Flatten the output from convolutional

layers.

 Add Dense layer with 64 neurons,

activation ReLU.

 Apply Dropou t (0 .5) fo r

regularization.

 Add final Dense layer with 1 neuron,

activation Sigmoid (for binary

classification).

3. Compile the Model

 Set optimizer as Adam.

 Use Binary Cross-Entropy as the loss

function.

 Use Accuracy as the evaluation

metric.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 19

4. Train the Model

 Fit the model using x_train_scaled

and y_train.

 Set 10% validation split.

 Train for 10 epochs.

 Use batch size 64 for efficiency.

 Set verbose=1 to display training

progress.

5. Evaluate the Model

 Evaluate performance using

x_test_scaled and y_test.

 Print Test Accuracy.

6. Plot Training and Validation Metrics

 Plot Training Loss vs. Validation

Loss.

 Plot Training Accuracy vs.

Validation Accuracy.

7. Make Predictions on a New Image

 Get image path as input from the

user.

 Read the image using cv2.imread.

 Display the image us ing

cv2_imshow.

 Resize image to (128,128,3).

 Normalize pixel values (divide by

255).

 Reshape image to (1,128,128,3) for

model prediction.

 Predict class probability using

modelNew.predict.

 Convert probability to class label

using argmax.

 Print predicted class label.

END

Figure 22: CNN-2 LAYERS

Figure 23: CNN-2 ARCHITECTURE

D. CNN-3 DATA COLLECTION

The purpose of this task is to set up the

dataset for a face mask detection project using

TensorFlow and Keras in Google Colab. It

involves uploading, extracting, and preparing

the dataset for further processing.

Steps Involved:

1. Import TensorFlow and Print Version

 Ensures TensorFlow is installed and

displays its version.

2. Install Keras

 Installs Keras if it is not already

available.

3. Upload the Dataset (data.zip) from the

Local System

 Prompts the user to select and upload

the data.zip file from their device.

4. Extract (Unzip) the Uploaded Dataset

 Unzips data.zip so that its contents

are accessible for model training and

analysis.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 20

5. Delete the ZIP File After Extraction

 Removes data.zip to free up storage

space, as it is no longer required.

C. CNN-3 Algorithm

BEGIN

 1: Install Required Libraries

 Install TensorFlow, Keras, and other

necessary libraries.

 2: Data Preparation

 Load dataset (data.zip) containing

two classes:

 “With Mask” (5012 images)

 “Without Mask” (5003 images)

 Image resolution: 70x70 pixels

 Unzip dataset and organize

directories for classification.

 3: Image Data Augmentation

Initialize `ImageDataGenerator` with:

 Rescale pixel values between 0 and

1.

 Apply augmentation techniques:

 Rotation

 Width shift

 Height shift

 Zoom

 Horizontal flip

 3.2. Split dataset into:

 80% training data

 20% validation data

 4: Model Definition

Create CNN model using `Sequential`:

 Layer 1: Convolution (32 filters, 3×3

kernel, ReLU) → MaxPooling (2×2)

 Layer 2: Convolution (32 filters, 3×3

kernel, ReLU) → MaxPooling (2×2)

 Layer 3: Convolution (64 filters, 3×3

kernel, ReLU) → MaxPooling (2×2)

 Flatten the output.

 Fully connected Dense layer (64

neurons, ReLU).

 Output Dense layer (1 neuron,

Sigmoid activation for binary

classification).

 5: Model Compilation

Compile model with:

 Optimizer: Adam (learning rate =

0.0001)

 Loss function: Binary Cross-Entropy

 Metric: Accuracy

 6: Model Training

 Train model using `train_generator`

for 30 epochs.

 V a l i d a t e m o d e l u s i n g

`validation_generator`.

 Monitor training and validation loss

and accuracy.

 7: Plot Training and Validation Loss

 Use `matplotlib` to plot:

 Training loss vs. Validation

loss

 Train ing accuracy vs .

Validation accuracy

 8: Prediction

 Load user-specified image.

 Preprocess image (resize, rescale,

convert to array).

 Predict using trained model:

 If output > 0.5 → “Without

Mask”

 Else → “With Mask”

 Display prediction result.

END

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 21

Figure 24: CNN-3 LAYERS

Figure. 25: CNN-3 ARCHITECTURE

Figure 26: Proposed Work Flow (CNN 3)

5. IMPLEMENTATION

Thi s sec t ion de sc r i be s t h e

implementation details of three different

Convolutional Neural Network (CNN) models

(CNN1, CNN2, and CNN3) for face mask

detection using different datasets and

architectures.

A. CNN1 Implementation

Dataset Details

Dataset URL: Kaggle Face Mask

Dataset (https://www.kaggle.com/datasets/

omkargurav/face-mask-dataset)

Figure 27: Dataset 1 Images with Mask

Figure 28: Dataset 1 Images without Mask

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 22

Total Number of Images: 7553

 Images with Mask: 3725 images

 Images without Mask: 3828 images

Input Image Size

 Original Image Size: The original

images are resized to 128x128 pixels

to standardize the input for the CNN

model.

After Preprocessing:

 Resize: All images are resized to

128x128 pixels.

 Color Format: Converted to RGB

color format (3 channels).

 Scaling: The pixel values are scaled

from the range of 0-255 to 0-1 (i.e.,

divided by 255).

Train-Test Split

 Training Set Size: 6042 images (80%

of the dataset)

 Test Set Size: 1511 images (20% of

the dataset)

CNN Model Structure

The CNN model has the following

architecture:

 Input Layer: Shape: (128, 128, 3) for

RGB images of size 128x128

 Conv2D Layer 1: 32 filters with a

kernel size of (3, 3), ReLU

activation, Output shape: (126, 126,

32)

 MaxPooling2D Layer 1: Pool size:

(2, 2), Output shape: (63, 63, 32)

 Conv2D Layer 2: 64 filters with a

kernel size of (3, 3), ReLU

activation, Output shape: (61, 61, 64)

 MaxPooling2D Layer 2: Pool size:

(2, 2), Output shape: (30, 30, 64)

 Flatten Layer: Output shape:

(57600)

 Dense Layer 1: 128 units with ReLU

activation

 Dropout Layer 1: 50% dropout

 Dense Layer 2: 64 units with ReLU

activation

 Dropout Layer 2: 50% dropout

 Output Layer: 2 units with a sigmoid

activation function (for binary

classification: mask vs. no mask)

 Model Compilation: Optimizer:

Adam, Loss Function: Sparse

Categorical Crossentropy, Metrics:

Accuracy Model Training and

Evaluation, Epochs: 20, Batch Size:

64, Visualization of Model Accuracy

and Loss, Predictive System

Figure 29: CNNN-1 Model Implemented Layers

Total params: 22,202,120 (84.69 MB)

Trainable params: 7,400,706 (28.23 MB)

Non-trainable params: 0 (0.00 B)

Optimizer params: 14,801,414 (56.46 MB)

B. CNN2 Implementation

Dataset Details

 Dataset URL: Kaggle Face Mask

Dataset (https://www.kaggle.com/

datasets/omkargurav/face-mask-

dataset)

Total Number of Images: 7553

 Images with Mask: 3725 images

 Images without Mask: 3828 images

Input Image Size

 Original Image Size: The original

images are resized to 128x128 pixels

to standardize the input for the CNN

model.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 23

After Preprocessing:

 Resize: All images are resized to

128x128 pixels.

 Color Format: Converted to RGB

color format (3 channels).

 Scaling: The pixel values are scaled

from the range of 0-255 to 0-1 (i.e.,

divided by 255).

Train-Test Split

 Training Set Size: 6042 images

(80% of the dataset)

 Test Set Size: 1511 images (20% of

the dataset)

Import Necessary Libraries

 Import TensorFlow and Keras to

build and train the model.

C. CNN Model Structure

 Input Shape: (128, 128, 3) →

128x128 RGB images.

 First Conv Layer: 32 filters, (3×3)

kernel, ReLU activation.

 First MaxPooling: (2×2) pool size.

 Second Conv Layer: 64 filters, (3×3)

kernel, ReLU activation.

 Second MaxPooling: (2×2) pool

size.

 Flatten Layer: Converts feature

maps into a 1D vector.

 Fully Connected Layer: 64 neurons,

ReLU activation.

 Dropout Layer: 50% dropout rate to

prevent overfitting.

 Output Layer: 1 neuron, sigmoid

activation (for binary classification).

 Compile the Model: Optimizer:

Adam, Loss Function: Binary

Crossentropy (since it’s a binary

classification problem), Metrics:

Accuracy

 Display Model Summary: Total

Parameters: 3,705,921 (~14.14 MB),

Trainable Parameters: 3,705,921,

Non-Trainable Parameters: 0

 Train the Model: Training Data:

x_train_scaled, y_train (images and

binary labels)., Validation Split: 10%

of training data used for validation,

Epochs: 10 (can be increased for

better performance), Batch Size: 64

(balanced for memory and

efficiency), Verbose: 1 (to display

training progress).

 Evaluate the Model: Test Data:

x_test_scaled, y_test, Output: Test

accuracy and loss.

 Make Predictions: New Image Input

Shape: (1, 128, 128, 3), Threshold

for Classification: 0.5, Predicted

Class: 0 = Mask, 1 = No Mask

Figure 30: CNNN-2 Model Implemented Layers

Total params: 3,705,921 (14.14 MB)

Trainable params: 3,705,921 (14.14 MB)

Non-trainable params: 0 (0.00 B)

C. CNN3 Implementation

Dataset Overview:

https://github.com/The-Assembly/Build

-A-Face-Mask-Detector-With-TensorFlow/

blob/main/FaceMask%20detection/data.zip

Figure 31: Dataset 2 Images with Labels

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 24

Dataset Overview & Preprocessing

 The dataset contains 10,015 images:

 5,012 images of people wearing

masks

 5,003 images of people without

masks

 Data is split into training (80%) and

validation (20%)

Image size: ----

 Original: 70x70 pixels

 Rescaled to 70x70 pixels during

preprocessing

 Data Augmentation & Data Splitting

 Data Augmentation is applied using

ImageDataGenerator:

 Rescaling pixel values to 0-1

 Rotation, width/height shift,

zooming, and horizontal flipping

Data Loading:

 train_generator: loads training data

 va l i d a t io n_ gene r a t o r : l o ads

validation data

D, CNN Model Structure

 Convolutional Layers: 3 Conv2D

layers (filters: 32, 32, 64, kernel size:

(3 , 3) , a c t i v a t i o n : R e LU) ,

3MaxPooling2D layers (pool size:

(2,2))

 Flatten & Dense Layers: Flatten()

layer, Dense layer with 64 neurons

(ReLU), Output layer with 1 neuron

(Sigmoid)

 Model Compilation & Training:

Optimizer: Adam (learning rate =

0.0001), Loss Function: Binary

Crossentropy, Metric: Accuracy,

Training:, batch_size = 8, epochs =

30

 Model Evaluation: Training and

validation loss/accuracy monitored

after each epoch

 Making Predictions: Load and

preprocess an input image, Use

model.predict() to classify if the

person is wearing a mask or not,

Display prediction results with

colored outputs (Green for masked,

Red for no mask)

Figure 32: CNNN-2 Model Implemented Layers

Total params: 290,913 (1.11 MB)

Trainable params: 290,913 (1.11 MB)

Non-trainable params: 0 (0.00 B)

6. RESULTS

This chapter presents the performance

evaluation of the three CNN models

developed for the given classification task. It

outlines the training, validation, and testing

outcomes in terms of accuracy and loss over

multiple epochs. The goal is to compare the

effectiveness of each model and analyze their

generalization capability based on the

obtained metrics.

Figure 33: CNN 1 Training & Validation Loss

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 25

Figure 34: CNN 1 Training & Validation Accuracy

Figure 35: CNN 2 Training & Validation Loss

Figure 36: CNN 2 Training & Validation Accuracy

Figure 37: CNN 3 Training & Validation Loss

Figure 38: CNN 3 Training & Validation Accuracy

Table 1: Dataset Description (CNN-wise)

Feature CNN1 CNN2 CNN3

Dataset Name Kaggle Face Mask Dataset Kaggle Face Mask Dataset
Github Build-A-Face-Mask-

Detector-With-TensorFlow

Total Images
7,553 (With Mask - 3,725,

With out Mask 3,828)

7,553 (With Mask - 3,725,

With out Mask 3,828)

10013 (With Mask - 5,011

With out Mask 5,002)

Image Resolution 128×128×3 RGB (3 channels)
128×128×3 RGB (3 chan-

nels)
70×70×3 RGB (3 channels)

Number of Classes 2 (Binary) 2 (Binary) 2 (Binary)

Train-Validation-

Test Split

Splitting: 80% Training (6042

images), 20% testing (1511

images).

Splitting: 80% Training

(6042 images), 20% testing

(1511 images).

Splitting: 80% Training (8011

images), 20% Validation (2002

images).

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 26

Table 2: Neural Network Structure

Table 3: Accuracy Comparison

Table 4: Final Performance Evaluation

Feature CNN1 CNN2 CNN3

Input Shape 128×128×3 128×128×3 70×70×3

Conv Layers 2 (32, 64 filters) 2 (32, 64 filters) 3 (32, 32, 64 filters)

Pooling Layers 2 MaxPooling (2×2)
2 MaxPool ing

(2×2)
3 MaxPooling (2×2)

Fully Connected

Layers

128 → Dropout(0.5) →

64 → Dropout(0.5)
64 → Dropout(0.5) 64 → Output

Output Layer Dense(2, Sigmoid) Dense(1, Sigmoid) Dense(1, Sigmoid)

Loss Function
Sparse Categorical

Crossentropy

Binary Crossen-

tropy
Binary Crossentropy

Optimizer Adam Adam Adam (LR=0.0001)

Batch Size 64 64 8

Epochs 20 10 30

Image Generator No No
from tensorflow.keras.preprocessing.image

import ImageDataGenerator

Metric CNN1 CNN2 CNN3 Best Model

Initial Training Accuracy 0.6246% 67.37% 0.7412% CNN3

Final Training Accuracy 0.9853% 97.54% 0.9724% CNN1

Best Validation Accuracy
0 . 9 8 7 3 %

(Epoch 19)
93.88% (Epoch 9) 0.9690% (Epoch 28) CNN1

Final Validation Accuracy 0.9471 0.9223 0.9565 CNN3

Test Accuracy 0.9212% 93.18%

Raw Prediction Prob-

ability: 0.9999 predic-

tion on one image

CNN3

Metric CNN1 CNN2 CNN3 Best Model

Initial Training Loss 0.7696 0.7425 0.5132 CNN3

Final Training Loss 0.0369 0.0560 0.0809 CNN1

Best Validation Loss 0.1979 (Epoch 7) 0.1857 (Epoch 7) 0.0848 (Epoch 28) CNN3

Test Loss 0.3349 0.2112 - CNN2

Training Time per Epoch ~180.5 seconds ~157 sec ~25 seconds CNN3

Total Training Time ≈60.17 minutes ~26 min ~12.5 minutes CNN3

Overfitting Risk Yes (after Epoch 10) Yes (after Epoch 9) No CNN3

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 27

Table 5: Comparison Table:

Feature Existing Work CNN1 CNN2 CNN3 Better Model(s)

Dataset Size
1,376 + 853 im-

ages (2 datasets)
7,553 images 7,553 images 10,013 images

CNN3 (Larger

dataset)

Image Reso-

lution

100×100

(Grayscale)

128×128×3

(RGB)

128×128×3

(RGB)
70×70×3 (RGB)

CNN1, CNN2

(Higher resolution)

Preprocess-

ing

Grayscale conver-

sion, normaliza-

tion, resizing

RGB, resiz-

ing,

scaling

RGB, resiz-

ing, scaling

RGB, resizing, Dat

Augmentation

CNN3 (More ad-

vanced

preprocessing)

Train-Test

Split

90% train, 10%

test, 20% valida-

tion from training

80% train,

20% test

80% train,

20% test

80% train, 20% vali-

dation

CNN3 (More

structured split)

Data Aug-

mentation
Not mentioned No No

Yes

(ImageDataGenerator)

CNN3 (Better

generalization)

Conv Layers 2 (200, 100 filters)
2 (32, 64 fil-

ters)

2 (32, 64 fil-

ters)
3 (32, 32, 64 filters)

CNN3 (More

convolutional layers)

Pooling Lay-

ers
2 (3×3) 2 (2×2) 2 (2×2) 3 (2×2)

CNN3 (More pooling

layers)

Dropout 1 (50%) 2 (50%) 1 (50%) None CNN1

Fully Con-

nected Lay-

ers

64 neurons 128 → 64 64 64
CNN1 (More

neurons)

Loss Func-

tion

Categorical

Crossentropy

Sparse Cate-

gorical

Crossentropy

Binary

Crossentropy
Binary Crossentropy

CNN2, CNN3 (More

suitable for binary

classification)

Optimizer Adam Adam Adam Adam (LR=0.0001)
CNN3 (Fine-tuned

learning rate)

Batch Size Not specified 64 64 8
CNN3 (Better

generalization)

Epochs 20 20 10 30
CNN3 (More training

for better learning)

Training

Accuracy
95.77%, 94.58% 98.53% 97.54% 97.23%

CNN1 (Highest

accuracy)

Validation

Accuracy
Not mentioned 94.71% 92.23% 95.65%

CNN3 (Best

generalization)

Test Accu-

racy
Not mentioned 92.12% 93.18%

Raw Prediction Prob-

ability: 0.9999 predic-

tion on one image

CNN3 (Best

generalization)

Loss Moni-

toring

Yes (Model

Checkpoint)
Yes Yes Yes

All CNNs (Proper

monitoring)

Overfitting

Risk

Not explicitly

mentioned

Yes (after

Epoch 10)

Yes (after

Epoch 9)
No

CNN3 (Best

generalization)

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 28

Figure 39 : Model Correctly Identified Person Waering

a Mask

Figure 40: Model Correctly Identified Person Not

Waering a Mask

7. CONCLUSION AND FUTURE WORK

The proposed work successfully

developed and compared different CNN

architectures for face mask detection,

focusing on performance, data augmentation,

and hyperparameter optimization. Among the

three models (CNN1, CNN2, and CNN3),

CNN3 demonstrated the best performance in

terms of validation and test accuracy, with a

final Validation Accuracy of 95.65%. This

improvement was attributed to the use of

advanced data augmentation techniques, such

as rotation, zoom, and shifting, which

enhanced the model’s ability to generalize.

Hyperparameter tuning, including a lower

learning rate and optimized batch size, further

contributed to CNN3's superior performance.

This research also highlighted the importance

of leveraging GPU acceleration for faster

model training and efficient dataset handling

using the Kaggle API. CNN3, with its robust

design, is well-suited for real-world

deployment in security systems for mask

detection in public places and workplaces.

Moreover, the models developed are highly

transferable and can be adapted to other

image classification tasks, showcasing the

scalability of CNN architectures for various

applications. Overall, CNN3 emerged as the

optimal model, offering excellent

generalization and deployment readiness.

Future advancements in face mask

detection can be significantly enhanced by

focusing on key areas that improve both

performance and real-world applicability.

Expanding datasets to include a broader range

of lighting conditions, facial orientations, and

various mask types will enhance model

robustness and generalization. Incorporating

advanced deep learning architectures like

ResNet, DenseNet, or EfficientNet, along

with transfer learning from large-scale

datasets, can boost accuracy and training

efficiency, particularly when data is limited.

Real-time deployment on mobile and

embedded devices through optimization

techniques such as quantization and pruning

will make these systems more practical and

responsive. Moving beyond binary

classification to include classes like "Mask

Incorrectly Worn" will offer a more nuanced

understanding of compliance. Additionally,

the adaptability of face mask detection models

to other domains such as healthcare

diagnostics and security systems broadens

their utility. Finally, prioritizing user privacy

through privacy-preserving techniques like

federated learning will be crucial in ensuring

ethical deployment, particularly in

surveillance scenarios. Collectively, these

future directions pave the way for more

accurate, efficient, and ethically responsible

face mask detection systems.

REFERENCE:

[1] Arjya Das, Mohammad Wasif Ansari,

Rohini Basak, “Covid-19 Face Mask

Detection Using TensorFlow, Keras

and OpenCV”, 2020 IEEE 17th India

Council International Conference

(INDICON) | 978-1-7281-6916-3/20/

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 29

$31.00 ©2020 IEEE | DOI: 10.1109/

INDICON49873.2020.9342585.

[2] Kavita Saini, Shubham Bharadwaj,

Vasu Gupta, “Face Mask Detection:

A Deep Learning Concept”, 2022 3rd

International Conference on

Intell igent Engineering and

Management (ICIEM) | 978-1-6654-

6756-8/22/$31.00 ©2022 IEEE |

DOI: 10.1109/ICIEM54221.2022.

9853014, 978-1-6654-6756-8/22/

$31.00 ©2022 IEEE.

[3] M.N.Kavitha, N. Kanimozhi2,

S.S.Saranya3, S.Janani Sri4,

V.Kalpana5, K.Jayavarthiniy6, “Face

Mask Detection Using Deep

Learning”, 2022 Second International

Conference on Artificial Intelligence

and Smart Energy (ICAIS) | 978-1-

6654-0052-7/22/$31.00 ©2022 IEEE

| DOI: 10.1109/ICAIS53314.2022.

9742825, 978-1-6654-0052-7/22/

$31.00 ©2022 IEEE. Kavitha et al.

2022

[4] Kallakuri Anirudh, Anirudh Ravi,

Vecha Sri Charan, Vijayshri

Chaurasiya , “FACE MASK

DETECTION USING MACHINE

L E A R N I N G ” , 2 0 2 2 I E E E

International Students' Conference on

Electrical, Electronics and Computer

Science (SCEECS) | 978-1-6654-

1418-0/22/$31.00 ©2022 IEEE |

DOI: 10.1109/SCEECS54111.2022.

9740913, 978-1-6654-1418-0/22/

$31.00 ©2022 IEEE. Anirudh et al.

2022

[5] Qaisar Abbas, Talal Saad Albalawi,

Ganeshkumar Perumal and M. Emre

Celebi, “Automatic Face Recognition

System Using Deep Convolutional

Mixer Architecture and AdaBoost

Classifier”, Abbas, Q.; Albalawi,

T.S.; Perumal, G.; Celebi, M.E.

Automatic Face Recognition System

Using Deep Convolutional Mixer

Architecture and AdaBoost Classifier.

Appl. Sci. 2023, 13, 9880. https://

doi.org/ 10.3390/app13179880,

Abbas et al. 2023

[6] Shilpa Sethi, Mamta Kathuria, Trilok

Kaushik, “Face mask detection using

deep learning: An approach to reduce

risk of Coronavirus spread”, https://

doi.org/10.1016/j.jbi.2021.103848,

Received 28 September 2020;

Received in revised form 10 June

2021; Accepted 20 June 2021

Available online 24 June 2021. Sethi

et al. 2021.

[7] Burhan ul haque Sheikh1 ·

Aasim Zafar1, “RRFMDS: Rapid

Real-Time Face Mask Detection

System for Effective COVID-19

Monitoring”, Received: 8 July 2022 /

Accepted: 15 February 2023 /

Published online: 27 March 2023 ©

The Author(s), under exclusive

licence to Springer Nature Singapore

Pte Ltd 2023. Sheikh et al. 2023

[8] Dostdar Hussain, Muhammad Ismail,

Israr Hussain, Roobaea Alroobaea,

Saddam Hussain, and Syed Sajid

Ullah, “Face Mask Detection Using

Deep Convolutional Neural Network

and MobileNetV2-Based Transfer

Learning”, Received 11 February

2022; Revised 13 March 2022;

Accepted 22 March 2022; Published

4 May 2022. Hussain et al. 2022

[9] Dr. Santosh Kumar Shukla, Pradeep

Singh, Diksha Haswani, Sarthak

Khare, Atul Gupta, “Face Mask

Detection Using Machine Learning”,

International Journal for Modern

Trends in Science and Technology, 8

(06): 132-136, 2022 Copyright ©

2022 International Journal for

Modern Trends in Science and

Technology ISSN: 2455-3778 online

DOI: https://doi.org/10.46501/

IJMTST0806019. Kumar Shukla et

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 13 | Issue 2 | June 2025 30

al. 2022

[10] Burhan ul Haque Sheikh1

Aasim Zafar1, “RRFMDS: Rapid

Real-Time Face Mask Detection

System for Effective COVID-19

Monitoring”, SN Computer Science

(2023) 4:288 https://doi.org/10.1007/

s42979-023-01738-9.

Deep Learning-Based Face Mask Detection Using Optimized CNN

Author(s) : Pragati Tiwari, Swati Soni | TIET, Jabalpur

