

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 5

Abstract—Data encryption has become a

crucial need for almost all data transaction

application due to the large diversity of the

remote information exchange. A huge value of

sensitive data is transferred daily via different

channels such as e-commerce, electronic

banking and even over simple email

applications. Advanced Encryption Standard

(AES) algorithm has become the optimum

choice for various security services in

numerous applications. Therefore, many

researches get focused on that algorithm in

order to improve its efficiency and

performance.. In this paper, a 128 bit AES

encryption and Decryption by using Rijndael

algorithm (Advanced Encryption Standard

algorithm) is been made into a synthesizable

using Verilog code which can be easily

implemented on to FPGA. The algorithm is

composed of three main parts: cipher, inverse

cipher and Key Expansion. Cipher converts

data to an unintelligible form called plaintext.

Key Expansion generates a Key schedule that

is used in cipher and inverse cipher

procedure. Cipher and inverse cipher are

composed of special number of rounds. For

the AES algorithm, the number of rounds to

be performed during the execution of the

algorithm uses a round function that is

composed of four different byte-oriented

transformations: Sub Bytes, Shift Rows, Mix

columns and Add Round Key.

Keywords:— Advanced Encryption Standard,

Cryptography, Decryption, Encryption.

1. INTRODUCTION

The Cryptography plays an important

role in the security of data transmission [1].

This paper addresses efficient hardware

implementation of the AES (Advanced

Encryption Standard) algorithm and describes

the design and performance testing of Rijndael

algorithm [3]. A strong focus is placed on high

throughput implementations, which are

required to support security for current and

future high bandwidth applications [5][6][7][8]

[9]. This implementation will be useful in

wireless security like military communication

and mobile telephony where there is a gayer

emphasis on the speed of communication [5].

This standard specifies the Rijndael algorithm,

a symmetric block cipher that can process

data blocks of 128 bits, using cipher keys with

lengths of 128, 192, and 256 bits [2].

Throughout the remainder of this standard, the
algorithm specified herein will be referred to as

―the AES algorithm. ‖ The algorithm may be

used with the three different key lengths
indicated above, and therefore these different

―flavors‖ may be referred to as ―AES- 128 ,‖

―AES -192 ,‖ and ―AES -256.‖

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Volume 4 Issue 3 | September 2016 ISSN: 2320-9984 (Online)

A Novel Approach for Implementation of Advanced Encryption

Standard Algorithm

Santosh Chouhan
Assistant Professor & Guide,

Department of Electronics & Communication

Engineering

Takshshila Institute of Engineering & Technology

Jabalpur (M.P.), [INDIA]

Email: santoshchouhan@takshshila.org

Sonika Gupta
Research Scholar M.Tech Scholar (DC)

Takshshila Institute of Engineering & Technology

Jabalpur (M.P.), [INDIA]

Email: sonikaguptas@gmail.com

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 6

A. AES Algorithm

AES is short for Advanced Encryption

Standard and is a United States encryption

standard defined in Federal Information

Processing Standard (FIPS) 192. AES is the

most recent of the four current algorithms

approved for federal us in the United States.

AES is a symmetric encryption algorithm

processing data in block of 128 bits. AES is

symmetric since the same key is used for

encryption and the reverse transformation,

decryption [2]. The only secret necessary to

keep for security is the key. AES may

configured to use different key-lengths, the

standard defines 3 lengths and the resulting

algorithms are named AES-128, AES-192 and

AES-256 respectively to indicate the length in

bits of the key. The older standard, DES or

Data Encryption Standard. DES is upto 56bits

only [4]. To overcome the disadvantages of des

algorithm, the new standard is AES algorithm.

This standard explicitly defines the allowed

values for the key length (Nk), block size (Nb),

and number of rounds (Nr).

B. AES Algorithm Specification

For the AES algorithm, the length of the input

block, the output block and the State is 128

bits. This is represented by Nb = 4, which

reflects the number of 32-bit words (number of

columns) in the State.

Figure 1: General structure of AES algorithm

An implementation of the AES algorithm

shall support at least one of the three key

lengths: 128, 192, or 256 bits (i.e., Nk = 4, 6, or

8, respectively). Implementations may

optionally support two or three key lengths,

which may promote the interoperability of

algorithm implementations. For the AES

algorithm, the length of the Cipher Key, K, is

128, 192 or 256 bits. The key length is

represented by Nk = 4, 6, or 8which reflects the

number of 32-bit words (number of columns)

in the Cipher Key. For the AES algorithm, the

number of rounds to be performed during the

execution of the algorithm is dependent on the

key size. The number of rounds is represented

by Nr, where Nr = 10 when Nk = 4, Nr = 12

when

Nk = 6, and Nr = 14 when Nk = 8. The

only Key-Block-Round combinations that

conform to this standard are given in Table 1.

Table 1. Key-Block-Round Combinations.

For both its Cipher and Inverse Cipher,

the AES algorithm uses a round function that is

composed of four different byte-oriented

transformations:

 Byte substitution using a substitution

table (S-box),

 Shifting rows of the State array by

different offsets,

 Mixing the data within each column

of the State array, and

 Adding a Round Key to the State.

2. ENCRYPTION

In encryption mode, the initial key is

added to the input value at the very beginning,

which is called an initial round. This is

followed by 9 iterations of a normal round and

ends with a slightly modified final round, as

one can see in Figure 2. During one normal

round the following operations are performed

Bit Pattern Key

Length

(NK

Words)

Block Size

(NB Words)

No of

Rounds

(NR

Words)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 7

in the following order: Sub Bytes, Shift Rows,

Mix Columns, and Add Round key. The final

round is a normal round without the Mix

Columns stage.

Figure 2: General structure of Encryption.

A. Steps in AES Encryption

 Sub Bytes—a non-linear substitution

step where each byte is replaced with

another according to a lookup table.

 Shift Rows—a transposition step

where each row of the state is shifted

cyclically a certain number of steps.

 Mix Columns—a mixing operation

which operates on the columns of the

state, combining the four bytes in

each column

 Add Round Key—each byte of the

state is combined with the round key;

each round key is derived from the

cipher key using a key schedule

B. Sub bytes Transformation

The Sub Bytes transformation is a non-

linear byte substitution that operates

independently on each byte of the State using a

substitution table (S-box). This S-box which is

invertible is constructed by composing two

transformations:

1. Take the multiplicative inverse in

the finite field GF (28), the

element {00} is mapped to itself.

2. Apply the following affine

transformation (over GF (2)):

For 0<i<8, where bi is the ith bit of the

byte, and ci is the ith bit of a byte c with the

Value {63} or {01100011}. Here and

elsewhere, a prime on a variable (e.g., b)

Indicates that the variable is to be

updated with the value on the right. In matrix

form, the affine transformation element of the

S-box can be expressed as:

Figure 3: Affine transformation

 Figure 4: S-BOX

Figure.5 Effect of the Sub Bytes () transformation on

the State.

63 7C 77 7B

CA 82 C9 7D

B7 FD 93 26

04 C7 23 C3

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 8

C. Shift Rows Transformation

In the Shift Rows transformation, the

bytes in the last three rows of the State are

cyclically shifted over different numbers of

bytes (offsets). The first row is not shifted at

all, the second row is shifted by one the third

row by two, and the fourth row by three bytes

to the left. Specifically, the Shift Rows

transformation proceeds as follows:

The shift value shift (r, Nb) depends on

the row number, r, as follows (recall that Nb =

4): shift(1, 4) 1; shift(2, 4) 2 ; shift(3,4) 3

This has the effect of moving bytes to

―lower ‖ positions in the row (i.e., lower
values of c in a given row), while the

―lowest ‖ bytes wrap around into the ―top‖ of

the row (i.e., higher values of c in a given
row)

Figure 6 .Shift Rows cyclically shifts the last three rows

in the State.

D. MixColumns Transformation

The Mix Columns transformation

operates on the State column-by-column,

treating each column as a four-term

polynomial.

(0  c < Nb)

As a result of this multiplication, the four
bytes in a column are replaced by the
following:

S’0,c = ({02} • s0,c) + ({03} • s1,c) + s2,c

+ s3,c

S’1,c = s0,c + ({02} • s1,c) +

({03} • s2,c) + s3,c

S’2,c = s0,c + s1,c + ({02} •

s2,c) + ({03} • s3,c)
S’3,c = ({03} • s0,c) + s1,c + s2,c +
({02} • s3,c)

Figure 7. Mix Columns operates on the State column-

by-column.

E. Add round Key Transformation

In the Add Round Key transformation, a

Round Key is added to the State by a simple

bitwise XOR operation. Each Round Key

consists of Nb words from the key schedule.

Those Nb words are each added into the

columns of the State, such that [wi] are the key

schedule words, and round is a value in the

range 0 round Nr. In the Cipher, the initial

Round Key addition occurs when round = 0,

prior to the first application of the round

function. The application of the Add Round

Key transformation to the Nr rounds of the

Cipher occurs when 1<round <Nr. The action

of this transformation is illustrated in Figure 8,

where l = round * Nb.

Figure 8: AddRoundKey XORs each column of the

State with a word from the key schedule.

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 9

F. Key Expansion

The AES algorithm takes the Cipher

Key, K, and performs a Key Expansion routine

to generate a key schedule. The Key Expansion

generates a total of Nb (Nr + 1) words: the

algorithm requires an initial set of Nb words,

and each of the Nr rounds requires Nb words

of key data. The resulting key schedule

consists of a linear array of 4-byte words,

denoted [wi], with i in the range 0 < i < Nb(Nr

+ 1). The expansion of the input key into the

key schedule proceeds according to the pseudo

code. SubWord is a function that takes a four-

byte input word and applies the S-box to each

of the four bytes to produce an output word.

The function Rot Word takes a word

[a0,a1,a2,a3] as input, performs a cyclic

permutation, and returns the word

[a1,a2,a3,a0]. The round constant word array,

Rcon[i], contains the values given by [xi-1,

{00},{00},{00}], with x i-1 being powers of x

(x is denoted as {02}) in the field GF(28). The

first Nk words of the expanded key are filled

with the Cipher Key. Every following word, w

[i], is equal to the XOR of the previous word,

w[i-1], and the word Nk positions earlier, w[i-

Nk]. For words in positions that are a multiple

of Nk, a transformation is applied to w[i-1]

prior to the XOR, followed by an XOR with a

round constant, Rcon[i]. This transformation

consists of a cyclic shift of the bytes in a word

(RotWord), followed by the application of a

table lookup to all four bytes of the word

(SubWord). It is important to note that the Key

Expansion routine for 256-bit Cipher Keys (Nk

= 8) is slightly different than for 128- and 192-

bit Cipher Keys. If Nk = 8 and i-4 is a multiple

of Nk, then SubWord () is applied to w [i-1]

prior to the XOR.

Figure 9 Key Expansion

3. DECRYPTION

In decryption mode, the operations are in

reverse order compared to their order in

encryption mode. Thus it starts with an initial

round, followed by 9 iterations of an inverse

normal round and ends with an AddRoundKey.

An inverse normal round consists of the

following operations in this order:

A d d R o u n d K e y , I n v M i x C o l u m n s ,

InvShiftRows, and InvSubBytes. An initial

round is an inverse normal round without the

InvMixColumns. shifted by Nb - shift(r, Nb)

bytes, where the shift value shift(r,Nb) depends

on the row number.

Figure 10: General structure of Decryption.

A. Inv Shift rows Transformation

InvShiftRows is the inverse of the

ShiftRows transformation. The bytes in the last

three rows of the State are cyclically shifted

over different numbers of bytes (offsets). The

first row, r = 0, is not shifted. The bottom three

rows are cyclically

S’0,c = ({0e} s0,c) + ({0b} s1,c) + ({0d} s2,c) + ({09}

s3,c)

S’1,c = ({09} s0,c) + ({0e} s1,c) + ({0b} s2,c) + ({0d}

s3,c)
S’2,c = ({0d} s0,c) + ({09} s 1, c {(+)0 e} s 2, c {(+)0 b}

s3,c)

S’3,c = ({0b} s0,c) + ({0d} s1,c) + ({09} s 2, c {(+)0 e}

s3,c)

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 10

Figure 11 InvShiftRows transformation

B. Inv Subbytes Transformation

InvSubBytes is the inverse of the byte

substitution transformation, in which the

inverse Sbox is applied to each byte of the

State. This is obtained by applying the inverse

of the affine transformation followed by taking

the multiplicative inverse in GF (28).The

inverse S-box used in the InvSubBytes ()

transformation is presented in Figure 12.

Figure 12: Inverse S-BOX

C. Inv MixColumns Transformation

InvMixColumns is the inverse of the

MixColumns transformation. InvMixColumns

operates on the State column-by-column,

treating each column as a four term

polynomial. The columns are considered as

polynomials over GF (28) and multiplied

modulo x4 + 1 with a fixed polynomial a-1(x),

given by a-1(x) = {0b} x3 + {0d} x2 + {09} x

+ {0e}, this can be written as a matrix

multiplication. Let

As a result of this multiplication, the four

bytes in a column are replaced by the

following:

D. Inverse of the Addroundkey

Transformation

AddRoundKey is its own inverse, since

it only involves an application of the XOR

operation. Equivalent Inverse Cipher

transformations differ from that of the Cipher,

while the form of the key schedules for

encryption and decryption remains the same.

However, several properties of the AES

algorithm allow for an Equivalent Inverse

Cipher that has the same sequence of

transformations as the Cipher (with the

transformations replaced by their inverses).

This is accomplished with a change in the key

schedule. The two properties that allow for this

Equivalent Inverse Cipher are as follows: The

Sub Bytes and Shift Rows transformations

commute; that is, a Sub Bytes transformation

immediately followed by a Shift Rows

transformation is equivalent to a Shift Rows

transformation immediately followed by a Sub

Bytes transformation.

The same is true for their inverses,

InvSubBytes and InvShiftRows. The column

mixing operations - MixColumns and

InvMixColumns – are linear with respect to

the column input, which means Inv

MixColumns(state XOR Round Key)

=InvMixColumns(state)XORInvMixColumns

(RoundKey). The se properties allow the order

of InvSubBytes and InvShiftRows

transformations to be reversed. The order of

the AddRoundKey and InvMixColumns

52 09 6A D5

7C E3 39 82

54 7B 94 32

08 2E A1 66

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 11

transformations can also be reversed, provided

that the columns (words) of the decryption key

schedule are modified using the

InvMixColumns transformation. The

equivalent inverse cipher is defined by

reversing the order of the InvSubBytes and

InvShiftRows transformations and by reversing

the order of the AddRoundKey and

InvMixColumns transformations used in the
―round loop‖ after first modifying the

decryption key schedule for round = 1 to Nr-1

using the InvMixColumns transformation. The

first and last Nb words of the decryption key

schedule shall not be modified in this manner.

4. IMPLEMENTATION RESULTS AND

DISCUSSION

This paper was successfully completed

with the implementation of Encryption and

decryption for AES algorithm. We

implemented different sub modules for AES

algorithm by using Verilog code. This

implementation will be useful in wireless

security like military communication and

mobile telephony where there is a gayer

emphasis on the speed of communication.

Figure 13.Encryption Result

Encryption simulation was successfully
completed by the use of key expansion and
transformations of shift Rows, sub bytes, mix
columns, add round keys.

Figure 14. Decryption Result

Decryption simulation was successfully

completed by the use of key expansion and

transformations of inverse shift Rows, inverse

sub bytes, inverse mix columns, inverse add

round keys.

5. CONCLUSION

This paper was successfully completed

with the implementation of AES algorithm on

128 bit message. The encrypted cipher text and

the decrypted text are analyzed and proved to

be correct. The encryption efficiency of the

proposed AES algorithm was studied and met

with satisfactory results. The following can be

considered for the future works of this paper:

REFERENCES:

[1] A.P. ANUSHA NAIDU, B. Prof

(Mrs.) POORVI K. JOSHI, FPGA

Implementation of Fully Pipelined

Advanced Encryption Standard, IEEE

ICCSP 2015 conference.

[2] M u r t a d a . M . A b d e l w a h a b ,

Abdelrasoul. J. Alzubaidi, VLSI

implementation of Advance

Encryption Algorithm using index

technique, International Conference

on Computing, Control, Networking,

Electronics and Embedded Systems

Engineering, 2015

[3] Daniel F. García, Performance

Evaluation of Advanced Encryption

Standard Algorithm, 2015 Second

International Conference on

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 4 | Issue 3 | Sep 2016 12

Mathematics and Computers in

Sciences and in Industry

[4] Ritu Pahal Vikas kumar, Efficient

Implementation of AES, International

Journal of Advanced Research in

Computer Science and Software

Engineering, Volume 3, Issue 7, July

2013

[5] M. Pitchaiah, Philemon Daniel,

Praveen, Implementation of

Advanced Encryption Standard

Algorithm, International Journal of

Scientific & Engineering Research

Volume 3, Issue 3, March -2012

[6] J. Daemen and V. Rijmen, The block

cipher Rijndael, Smart Card research

and Applications, LNCS 1820,

Springer-Verlag, pp. 288-296.

[7] Specification for the Advanced

Encryption Standard (AES),‖ Federal

Information Processing Standards

Publication 197, Nov. 2001

[8] A. Menezes, P. van Oorschot, and S.

Vanstone, Handbook of Applied

Cryptography, CRC Press, New

York, 1997, p. 81-83.

[9] C.-P. Su, T.-F. Lin, C.-T. Huang, and

C.-W. Wu, ―A high-throughput low-

cost AES processor, ‖ IEEE Commun.

Mag., vol. 41, no. 12, pp.86 91 , Dec.

2003.

[10] C.-P. Su, C.-L. Horng, C.-T. Huang,

and C.-W. Wu, ―A configurable

AES processor for enhanced

security,‖ in Proc. ASP-DAC,

Shanghai, China, Jan. 2005, pp. 361–

366.

[11] Rachh, R.R.; Anami, B.S.; Ananda

M o h a n , P . V . ― E f f i c i e t

implementations of S-box and inverse

S-box for AS algoritm, ‖ in TENCON

2009 - 2009 IEEE Region 0

Conference Nov. 2009, pp. 16.

A Novel Approach for Implementation of Advanced Encryption Standard Algorithm

Author(s) : Sonika Gupta, Santosh Chouhan | Takshshila, Jabalpur

