

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 69

Abstract—Data Mining is an analytic process

designed to explore data (usually large

amounts of data - typically business or market

related - also known as "big data") in search

of consistent patterns and/or systematic

relationships between variables, and then to

validate the findings by applying the detected

patterns to new subsets of data.

Most large retail organizations uses database

mining, faces the problem of decision support.

Development of bar-code technology has

made able retail organizations to collect and

store massive amounts of sales data. A record

in such data typically consists of the

transaction date and the items bought in the

transaction. A sequence database consists of

sequences of ordered elements or events,

recorded with or without a concrete notion of

time. There are many applications involving

sequence data.

In this paper we have presented an

application of data mining on grocery shop

database. This warehoused database is mined

using PISA algorithms whose results can be

utilized for decision making and comparing

the performance of this algorithm with other

algorithms like GSP+, SPAM+, and DirApp.

Programs are coded in C++.

1. INTRODUCTION

Database mining is a decision support

problem. Data mining is the process of

extracting interesting patterns from huge data

such as relational database, data warehouse etc.

Data mining is becoming an increasingly

important tool to transform these data into

information. Data mining is often carried out

only on samples of data. The mining process

will be ineffective if the samples are not a good

representation of the larger body of data.

A sequence database consists of

sequences of ordered elements or events,

recorded with or without a concrete notion of

time[1]. Typical examples include customer

shopping sequences, Web click streams,

biological sequences, sequences of events in

science and engineering, and in natural and

social developments.

1.1 Sequential Pattern Mining

Sequence Pattern Miningis the mining of

frequently occurring ordered events or

subsequences as patterns [9]. Also

telecommunications and other businesses may

use sequential patterns for targeted marketing,

customer retention and many other tasks. Other

areas in which sequential patterns can be

applied include Web access pattern analysis,

weather prediction, production processes, and

network intrusion detection analysis. Most

studies of sequential pattern mining

concentrate on categorical patterns [9].

The sequential pattern mining problem

was first introduced by Agrawal and Srikant in

1995[1] based on their study of customer

purchase sequences, as follows: “Given a set of

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Volume 3 Issue 1 | March 2015 ISSN: 2320-9984 (Online)

Optimisation for Sequential Pattern Mining in Progressive Database

Prof. Nitesh M. Tarbani
Assistant Professor

Department of Computer Science Engineering,

Prof. Ram Meghe Institute of Technology & Research,

Badnera, Amravati (M.H.) [INDIA].

Email: nmtarbani@mitra.ac.in

Preeti Bharatrao Gawande
M.E. Research Scholar

Department of Computer Science Engineering,

Prof. Ram Meghe Institute of Technology & Research,

Badnera, Amravati (M.H.) [INDIA]

Email: p6gawande@gmail.com

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 70

sequences, where each sequence consist of a

list of events (or element) and each event

consists of set of items, and given a user

specified minimum support threshold of

min_sup, sequential pattern mining finds all the

frequent subsequences, that is, the

subsequences whose occurrence frequency in

the set of sequences is no less than min_sup.”

1.2 Progressive Database

There have been many recent studies on

the mining of sequential patterns in a static

database, which do not fully explore the effect

of deleting old data from the sequences in the

database. When sequential patterns are

generated, the newly arriving patterns may not

be identified as frequent sequential patterns

due to the existence of old data and sequences

[7]. Even, the obsolete sequential patterns that

are not frequent recently may stay in the

reported results. Generally, users are more

interested in the recent data than the old ones.

To capture the dynamic nature of data addition

and deletion, we propose a general model of

sequential pattern mining with a progressive

database while the data in the database may be

static, inserted, or deleted.

1.3 Progressive Sequential Pattern Mining

The incremental mining algorithms do

not consider the deletion of the obsolete data

from the sequence database. Thus it is not

applicable to a progressive database. However,

if a certain sequence does not have any newly

arriving elements, this sequence will still stay

in the database and undesirably contribute to

the number of sequences in the sequence

database. Therefore, when new sequential

patterns are generated, the new patterns which

appear frequently in the recent sequences may

not be considered as frequent sequential

patterns because number of sequences in the

sequence database is never reduced. In view of

this, the infrequent sequential patterns whose

timestamps are obsolete should be removed

[7].

Here we are using an algorithm PISA[2],
which stands for Progressive mIning of

Sequential pAtterns, corresponding to the

mining in a progressive database. PISA takes

the concept of period of interest (POI) into

consideration. POI is a sliding window, whose

length is a user specified time interval,

continuously advancing as the time goes by.

The sequences having elements whose

timestamps fall into this POI, contribute to the

number of sequences in the sequential database

for current sequential patterns. On the other

hand, the sequences having only elements with

timestamps older than POI should be pruned

away from the sequence database immediately

and will not contribute to the sequence

thereafter [7].

2. PISA ALGORITHM

The main concept of PISA is to

progressively update the information of each

sequence and each candidate sequential pattern

in the database. Using PS Tree it stores all

sequences from one POI to another. PS-Tree is

the core part of the algorithm PISA. It contains

the information of all sequences in a

progressive database and helps PISA to

generate frequent sequential patterns in each

POI. There are two types of nodes in the PS-

Tree: root node and common node. Root node,

contains a list of common nodes as its children.

Each common node stores its node label

(element of the sequence) and a sequence list

(list of sequence IDs to represent the sequences

containing this element). Each sequence ID in

the sequence list is marked by a corresponding

timestamp.

Whenever there are a series of elements

appearing in the same sequence, there will be a

series of nodes labeled by each element,

respectively, with the same sequence IDs in

their sequence lists. Then, the first node will be

connected to the root node and the second node

representing the following element will be

connected to the first node. The other nodes

will be connected analogously. In such a way,

the path from root node to any other node will

Optimisation for Sequential Pattern Mining in Progressive Database

Author(s): Preeti Bharatrao Gawande, Nitesh M. Tarbani | PRMITR, Badnera, Amravati

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 71

represent the candidate sequential pattern

appearing in this sequence. The appearing

timestamp for each candidate sequential

pattern will be marked in the node labeled by

the last element. If there is another sequence

having the same pattern, the sequence ID will

be inserted into the sequence lists of the same

node labeled by these elements on the path. On

the other hand, if an element appearing in a

sequence is obsolete, the corresponding

sequence ID will be removed from the

sequence list of the node. In addition, if a node

has no sequence in the sequence list, it will be

pruned away from PS-tree. Thus, there are

only up-to-date candidate sequential patterns

available in PS-tree.

The main concept of PISA is to

progressively update the information of each

sequence and each candidate sequential pattern

in the database. Using PS Tree it stores all

sequences from one POI to another. PS-Tree is

the core part of the algorithm PISA. It contains

the information of all sequences in a

progressive database and helps PISA to

generate frequent sequential patterns in each

POI. There are two types of nodes in the PS-

Tree: root node and common node. Root node,

contains a list of common nodes as its children.

Each common node stores its node label

(element of the sequence) and a sequence list

(list of sequence IDs to represent the sequences

containing this element). Each sequence ID in

the sequence list is marked by a corresponding

timestamp.

Whenever there are a series of elements

appearing in the same sequence, there will be a

series of nodes labeled by each element,

respectively, with the same sequence IDs in

their sequence lists. Then, the first node will be

connected to the root node and the second node

representing the following element will be

connected to the first node. The other nodes

will be connected analogously. In such a way,

the path from root node to any other node will

represent the candidate sequential pattern

appearing in this sequence. The appearing

timestamp for each candidate sequential

pattern will be marked in the node labeled by

the last element. If there is another sequence

having the same pattern, the sequence ID will

be inserted into the sequence lists of the same

node labeled by these elements on the path. On

the other hand, if an element appearing in a

sequence is obsolete, the corresponding

sequence ID will be removed from the

sequence list of the node. In addition, if a node

has no sequence in the sequence list, it will be

pruned away from PS-tree. Thus, there are

only up-to-date candidate sequential patterns

available in PS-tree.

3. COMPARISON OF THE

PERFORMANCE OF THE

ALGORITHMS

In this section, we conduct several

experiments to evaluate the performance of the

proposed algorithm and the effects of input

parameters. The only existing work that can

deal with the progressive database still applies

static mining algorithm to remind each sub

database. We implement the simple

conceivable algorithm, DirApp, as well. GSP+,

SPAM+, and PISA are all coded in C++, and

the experiments are executed on a computer

with Pentium 4, 3-GHz CPU and 2-Gbyte

RAM. First, we will describe the method to

generate the synthetic data sets. Then, we show

the performance improvement of PISA over

GSP+, SPAM+, and DirApp. The execution

time of fast version of PISA are also included.

To give more insights into the proposed

algorithm, we will investigate the effects of

some parameters. To investigate the searching

space of DirApp and PISA, we calculate the

maximum memory usage of each algorithm.

We will show the trend of memory usage.

3.1 Experiment Design

The synthetic data sets are generated in a

way similar to the IBM data generator

designed for testing sequential pattern mining

algorithms. Several parameters can be assigned

to produce different synthetic data sets. We use

Netflix Prize data as the testing workload,

which contains 17,770 different items and

480,169 users. The previous works about

Optimisation for Sequential Pattern Mining in Progressive Database

Author(s): Preeti Bharatrao Gawande, Nitesh M. Tarbani | PRMITR, Badnera, Amravati

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 72

incremental sequential pattern mining append

the newly arriving elements of all sequences

directly to the end of the original sequence

database. They do not concern themselves with

the POI, but instead, take the whole database

of all elements into consideration. In our work,

the obsolete elements which exceed the POI

will be deleted from the sequence database.

For this reason, each element should be

designated an arriving timestamp. The items in

this interval are combined as an element at a

timestamp. Thus we transform the format of

the generated data sets. First, we divide the

target data set into n timestamps. According to

the input parameter POI, the first m

timestamps are viewed as the original database

and the rest of elements in the data set are

received by the system incrementally.

The length of POI is inevitably smaller

than n, and the overall timestamps must be

longer than the maximum number of elements

that one sequence produces. The first run of the

experiments mines the first POI from the

beginning m timestamps of the data set ðm ¼

POI Þ. After that, we shift the POI one

timestamp forward for the following runs. In

this way, the elements in the up-to-date

timestamp stand for the incremental part of the

sequence database, and the obsolete elements

are deleted. As for GSP+ and SPAM+, we

retrieve the elements of corresponding m

timestamps in the data set in each run and feed

them into the system. Then, GSP+ and

SPAM+ remine the input elements of m

timestamps in that iteration. Because the

remining process takes excessive time, we

move POI t timestamps ðt mÞ forward instead

of shifting POI only one timestamp forward in

every run for better execution time of GSP+

and SPAM+. Therefore, the sequential patterns

in the skipped POIs cannot be generated by

GSP+ and SPAM+. In contrast, while

performing even more efficiently, algorithms

DirApp and PISA are still able to produce

sequential patterns for every POI when

processing newly arriving elements with

multiple timestamps at the same time, showing

the progressive advantage over the

competitors. The experiment shows the

cumulative time of continuous runs of the

algorithms. Except the experiment, every point

on the figure in the other experiments has the

total execution time of 16 runs. That is, there is

a total of 40 timestamps and POI is set as 10.

In addition to the first run of the first POI,

there are other runs of incremental sub

databases (two timestamps forward) fed into

the system contributing the reported time of

every point. If there is no specific description,

the minimum support threshold is set to 0.02

and the number of different items is set to

1,000. Because there is no special trend of

execution time or memory usage on the

number of different items, we do not include

the result of this experiment in this paper. As

for real data sets, we randomly choose

successive 120 days for the performance

evaluation. A timestamp is set as 3 days in

order to obtain sufficient frequent sequential

patterns. Therefore, there is a total of 40

timestamps and POI is set as 10, which meets

the same environment as synthetic data sets. In

this way, the new data sets contain more than

5,000 sequences and 2,000 different items.

Figure 1 : Cumulative execution time.

3.2 Cumulative Execution Time

The algorithm PISA is a progressive

algorithm to handle the situation that the POI

advances over time. Figure 1 shows the

superiority in terms of cumulative execution

time of PISA over GSP+, SPAM+, and

DirApp. We record the execution time of all

algorithms at each timestamp from the

beginning to the end. Then, we show the

accumulated time from the beginning

timestamp to the current one as cumulative

Optimisation for Sequential Pattern Mining in Progressive Database

Author(s): Preeti Bharatrao Gawande, Nitesh M. Tarbani | PRMITR, Badnera, Amravati

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 73

execution time in Figure 1. The last point of

each algorithm represents the total execution

time needed by the algorithm for processing

the whole data set. We see that as the first

point of each series shown in Figure 1, PISA

consumes shorter execution time than the

competitors in each single run. This is because

only one scan of the PS tree is needed by Pisa,

which combines the sequences having the

same pattern together. However, GSP+ has to

scan sub database multiple times to check the

occurrence frequencies of candidate sequential

patterns. SPAM+ has to scan a big

lexicographic sequence tree of all the items and

the candidate sequential patterns. As for

DirApp, the candidate sets of all sequences

involve a lot of computation time.

Furthermore, as the POI advances over time,

PISA and DirApp need to process only new

elements that lie at arriving timestamps, but

GSP+ and SPAM+ have to rerun the mining

process on the whole sub database. Therefore,

the cumulative execution time of PISA and

DirApp shows more superiority against GSP+

and SPAM+. But, with the help of PS-tree,

PISA is more efficient than DirApp while they

update the sequences by more than 10 times.

3.3 The Effects of the Input Parameters

In the following experiments, we

examine the effects of the input parameters, the

minimum support, and the POI. Figure 2a

shows the total execution time of all algorithms

over different minimum support values. The

execution time of GSP+ and SPAM+ grows as

the minimum support value reduces. When the

minimum support is set to 2 percent, the

execution time of GSP+ is more than 106

times of PISA and the execution time of

SPAM+ is more than 61 times of PISA. The

reason is that as the minimum support value

diminishes, the number of candidate sequential

patterns generated by GSP+ and SPAM+

increases considerably. Thus, the scanning

time of all candidate sequential patterns needed

by GSP+ and SPAM+ increases incredibly. On

the other hand, the execution time of PISA and

DirApp over different minimum support values

remains the same.

Figure 2. (a) Total execution time.

Figure 2. (b) Memory usage with minimum supports

varied.

It is because they generate the same

number of candidate sequential pattern

irrespective of the minimum support value.

Therefore, the processing time of all candidate

sequential patterns is the same over different

minimum support values.

4. CONCLUSION

The sequential patterns generated by a

progressive database over time should be

updated accordingly [3]. This project aimed at

maintaining the latest sequences, finding the up

-to-date sequential patterns and delete obsolete

patterns on the fly. The proposed algorithm

PISA efficiently handles the problem of

sequential pattern mining over progressive

data. It is seen that PISA requires a single scan

of the PS-tree, which is a candidate structure

for this algorithm. This generalized model was

further extended to accept new data and

generate the modified PS-tree dynamically.

PISA was then modified to generate weighted

Optimisation for Sequential Pattern Mining in Progressive Database

Author(s): Preeti Bharatrao Gawande, Nitesh M. Tarbani | PRMITR, Badnera, Amravati

International Journal of Modern Engineering & Management Research | Vol 3 | Issue 1 | March 2015 74

patterns depending on the timestamps of

occurrence of individual items in the pattern.

The enhanced version of PISA now provides a

certain amount of data hiding. In this, the

actual data is hidden from the user by adding

certain spurious values, such that they do not

affect the original outcome of the algorithm.

Thus PISA is a generalized model for

sequential pattern mining which works on

categorical data. It can further be extended to

discover correlations and trends in numerical

data in order to widen its scope of application.

REFERENCES:

[1] Agrawal, R. and Srikant, R. Mining

sequential patterns. In Eleventh

International Conference on Data

Engineering, P. S. Yu and A. S. P.

Chen, Eds. IEEE Computer Society

Press, Taipei, Taiwan, pp. 3-14, 1995.

[2] S. Parthasarathy, M.J. Zaki, M.

Ogihara, and S. Dwarkadas,

“Incremental and Interactive

Sequence Mining,” Proc. 8th ACM

Int’l Conf. Information and

Knowledge Management (CIKM

’99), pp. 251-258, 1999.

[3] F. Masseglia, P. Poncelet, and M.

Teisseire, “Incremental Mining of

Sequential Patterns in Large Databases,”

Data and Knowledge Eng., vol. 46, pp.

97-121, 2003.

[4] A. Balachandran, G.M. Volker, P.

B a h l , a n d P . V . R a n g a n ,

“Characterizing User Behavior and

Network Performance in a Public

Wireless LAN,” Proc. ACM

S I G M E T R I C S I n t ’ l C o n f .

Measurement and Modeling of

Computer Systems (SIGMETRICS

’02), pp.195- 205, June 2002.

[5] http://en.wikipedia.org/wiki/Java

(programming language)

[6] J. Han and M. Kamber. “Data

Mining: Concepts and Techniques”.

Second Edition, 2006.

[7] Jen-Wei Huang, Chi-Yao Tseng, Jian

-Chih Ou, and Ming-Syan Chen. “A

General Model for Sequential Pattern

Mining with a Progressive Database”,

Knowledge And Data Engineering,

vol. 20, no. 9, pp. 1153-1167,

September 2008.

Optimisation for Sequential Pattern Mining in Progressive Database

Author(s): Preeti Bharatrao Gawande, Nitesh M. Tarbani | PRMITR, Badnera, Amravati

