

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 12

Abstract—The time period leading up to the

2016 U.S. presidential election refers to the

months and weeks preceding the election day,

which was held on November 8, 2016. It was

a politically charged period marked by

intense campaigning, debates, and media

coverage focused on the presidential

candidates, their policies, and the overall

state of the nation. The election primarily

featured two major-party candidates, Donald

Trump and Hillary Clinton, who represented

the Republican and Democratic parties,

respectively. The Source of the Dataset is

Kaggle, the dataset used in this study was

obtained from Kaggle and consists of 20,800

rows and 5 columns. The columns in the

dataset include “id,” “title,” “author,”

“text,” and “label.” Each entry in the dataset

is uniquely identified by the “id” column. The

“title” column contains the headline or title

of the news articles, while the “author”

column provides information about the author

or source of the articles. The main body of the

articles is present in the “text” column,

providing further details and information. The

“label” column indicates that the dataset is

used for a classification task, where each

entry is assigned, a label representing a

certain category or sentiment (e.g., true/false,

reliable/unreliable, etc.). The Study presents

the accuracy scores achieved by each model

on the training and test data, as well as the

execution times for each model. Several

machine learning models were created and

evaluated using this dataset, and their

performance metrics were recorded. The

models include Logistic Regression,

MultinomialNB, DecisionTreeClassifier,

GradientBoostingClassifier, LGBMClassifier,

XGBClassifier, and Random Forest

Classifier. The modified versions of the

Gradient Boosting Classifier and Random

Forest Classifier are also examined. Thus,

findings provide insights into the performance

of different machine learning models applied

to the dataset. The accuracy scores represent

the models' performance on both the training

and test data, while the execution times

indicate the time taken by each model to train

and make predictions.

Keywords:— Fake News Prediction, Machine

Learning algorithm, NLTK, Logistic

Regression, MultinomialNB, DecisionTree

Classifier, GradientBoostingClassifier,

Random Forest Classifier

1. INTRODUCTION

The dataset provided is from a Kaggle

on fake news detection. The dataset aims to

provide a collection of news articles labeled

as either “fake” or “real” to facilitate the

development and evaluation of machine

learning models for fake news detection. It

allows researchers to explore various machine

learning techniques and develop strategies to

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Volume 11 Issue 2 | June 2023 ISSN: 2320-9984 (Online)

Optimizing Model Accuracy and Execution Time for Fake News

Prediction using Machine Learning Algorithms

Deepali Rosta
M.Tech, Research Scholar

Computer Science and Engineering

Takshshila Institute of Engineering and Technology

Jabalpur (M.P.), India

Email: deepalirosta@gmail.com

Swati Soni
Assistant Professor

Department of Computer Science and Engineering

Takshshila Institute of Engineering and Technology

Jabalpur (M.P.), India

Email: swatisoni@takshshila.org

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 13

identify misleading or fabricated information

in news articles. By using this dataset,

researchers can perform partition over the

Dataset, train machine learning models using

the labeled training set and evaluate their

performance on the test set. The competition

framework encourages the development of

effective techniques and models that can

accurately classify news articles as “fake” or

“real” based on their content.

Machine Learning

Machine learning is a field of artificial

intelligence that focuses on the development

of algorithms and models that enable

computers to learn and make predictions or

decisions without being explicitly

programmed. It is concerned with creating

systems that can automatically learn from and

improve with experience. In machine

learning, a model is trained on a dataset,

which consists of input data and

corresponding output labels or target values.

The model learns patterns and relationships

within the data to make predictions or take

actions when presented with new, unseen

data. There are several types of machines

learning techniques, including:

Supervised Learning: In this approach, the

model is trained using labeled data, where the

input data is paired with the correct output

labels. The model learns to generalize from

the training data and make predictions or

classify new, unseen data based on the learned

patterns.

Unsupervised Learning: Here, the model is

trained on unlabeled data, and its objective is

to discover inherent patterns or structures

within the data. Unsupervised learning

techniques include clustering, dimensionality

reduction, and anomaly detection.

Semi-Supervised Learning: This is a

combination of supervised and unsupervised

learning. It uses a small amount of labeled

data along with a larger amount of unlabeled

data to train the model. The labeled data helps

guide the learning process and improve the

model’s performance.

Reinforcement Learning: In reinforcement

learning, an agent learns to make decisions

and take actions in an environment to

maximize a reward signal. The agent explores

the environment, receives feedback in the

form of rewards or penalties, and adjusts its

actions accordingly to optimize its

performance. Machine learning can be

utilized for fake news detection by leveraging

the patterns and characteristics present in both

fake and genuine news articles.

A. Logistic Regression

Logistic regression is a widely used

algorithm in machine learning for tackling

binary classification problems. It is a

supervised learning algorithm that aims to

predict the probability of an input belonging

to a specific class. Contrary to its name,

logistic regression is primarily employed for

classification tasks rather than regression.

The fundamental concept behind

logistic regression is to establish a

relationship between the input variables

(features) and the probability of the target

variable (class label) assuming a particular

value. The output of logistic regression is a

probability value ranging from 0 to 1, which

indicates the likelihood of the input belonging

to the positive class.

B. MultinomialNB

The Multinomial Naive Bayes

(MultinomialNB) classifier is primarily

designed for text classification tasks with

discrete features. However, it can also be used

for binary classification tasks by converting

the binary labels into two distinct classes. The

classifier is based on the Naive Bayes

principle, which assumes that the features are

conditionally independent given the class.

MultinomialNB works for binary

classification:

C. Decision Tree Classifier

A Decision Tree Classifier for fake

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 14

news prediction is a machine learning

algorithm that uses a decision tree model to

classify news articles as either fake or

genuine. The algorithm learns from a labeled

dataset of news articles, where each article is

labeled with its corresponding class (fake or

genuine). The decision tree model represents

a flowchart-like structure where each internal

node corresponds to a feature or attribute, and

each leaf node represents a predicted class

(fake or genuine).

The Decision Tree Classifier works by

recursively splitting the dataset based on the

selected features and splitting criteria to create

a tree-like structure. The splitting criteria are

chosen to maximize the homogeneity or

purity of the resulting subsets. The algorithm

determines the most informative features that

can effectively separate fake and genuine

news.The Decision Tree Classifier is a

popular algorithm used for fake news

prediction.

D. Random Forest Classifier

Random Forest Classifier is an

ensemble learning algorithm that combines

multiple decision trees tomake predictions. It

is widely used for binary classification tasks.

Here's how it works:

1. Data preparation: First, you need to

prepare your data by splitting it into a feature

matrix (X) and a target variable vector (y).

The feature matrix contains the input features

or attributes, while the target variable vector

contains the corresponding binary labels (0 or

1).

2. Building Decision Trees: Random Forest

Classifier creates a collection of decision

trees. Each tree is trained on a random subset

of the training data, known as a bootstrap

sample. Additionally, at each node of the tree,

only a random subset of features is considered

for splitting. This process helps to introduce

randomness and reduce overfitting.

3. Growing Decision Trees: Each decision

tree is grown by recursively partitioning the

data based on the selected features. The splits

are determined by finding the best feature and

threshold that maximize the information gain

or Gini impurity (a measure of node purity).

The process continues until a stopping

criterion is met, such as reaching the

maximum depth of the tree or having a

minimum number of samples in a leaf node.

4. Voting for Predictions: Once all the

decision trees are built, predictions are made

by each tree individually. For binary

classification, each tree votes for the class

label (0 or 1) based on the majority class in its

leaf node. The final prediction is determined

by taking the majority vote of all the trees

(mode of the predictions).

5. Handling Missing Data: Random Forest

Classifier can handle missing data effectively.

When making predictions for a sample with

missing values, the algorithm considers all

available features and averages the

predictions from the trees that do not rely on

the missing feature.

6. Evaluation and Tuning: After training the

Random Forest Classifier, you can evaluate

its performance on a separate validation or

test set. Common evaluation metrics for

binary classification include accuracy,

precision, recall, and F1 score. If necessary,

you can adjust the hyperparameters of the

Random Forest, such as the number of trees,

the maximum depth of each tree, or the

number of features considered at each split, to

improve its performance.

Random Forest Classifier is known for

its robustness, scalability, and ability to

handle high-dimensional data. It can handle

both numerical and categorical features and

provides estimates of feature importance,

allowing you to analyze the contribution of

each feature in the classification process.

E. Gradient Boosting Classifier

Gradient Boosting Classifier is an

ensemble machine learning algorithm that is

widely used for fake news prediction. It works

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 15

by combining multiple weak models, usually

decision trees, to create a strong predictive

model. Here's a high-level concept of how

Gradient Boosting Classifier works for fake

news prediction:

Data Preparation: Prepare a labeled dataset

of news articles, where each article is labeled

as either fake or genuine. Split the dataset into

input features (X) and labels (Y).

Initialization: Initially, the Gradient Boosting

Classifier creates a weak model, such as a

decision tree, to make predictions. The weak

model is assigned equal weight to all

instances in the dataset.

Predictions and Residuals: The weak model

is used to make predictions on the dataset.

The difference between the predicted values

and the actual labels (residuals) is calculated.

Building the Ensemble: A new weak model,

typically another decision tree, is created to

predict the residuals. This model is trained on

the residuals rather than the original labels.

The goal is to capture the patterns in the

residuals that were not captured by the

previous model.

Weighted Voting: The predictions from all

the weak models are combined using

weighted voting. The weight assigned to each

model is determined by its performance in

minimizing the residuals. Models that

contribute more to reducing the overall error

are assigned higher weights.

Iterative Training: Steps 3 to 5 are repeated

iteratively. In each iteration, a new weak

model is trained to predict the residuals of the

previous ensemble. The ensemble is updated

by adding the new model with an updated set

of weights.

Final Prediction: The final prediction is

obtained by summing the predictions from all

the weak models in the ensemble, considering

their respective weights. The resulting value

is typically transformed using a threshold to

classify the news articles as fake or genuine.

2. RELATED WORK

A. Data Preprocessing

The data preprocessing tasks

performed on the fake real news

prediction dataset include:

1. Handling Missing Values: The code

replaces missing values in the dataset,

specifically in the text column, with an empty

string. This ensures that the subsequent

processing steps can handle the data properly.

2. Feature Extraction: Instead of using the

entire text column, the code merges the title

and author columns to create a new column

called “Content.” This step aims to reduce the

text size and processing time by focusing on

specific information that may be relevant for

the classification task.

3. Removing a Column: The code removes a

column, likely the original text column, from

the dataset. This step eliminates unnecessary

features that are not used in the subsequent

modeling process.

4. Stemming: Stemming is applied to the

content column to reduce words to their root

forms. The code uses regular expressions to

remove digits, special characters, and

punctuations. It then converts uppercase

letters to lowercase, splits the text into a list of

words, applies stemming to each word

(excluding stopwords), and finally joins the

stemmed words. This process helps to

normalize the text data and reduce the

vocabulary size.

5. Converting Raw Text Data into Numerical

Value: The code uses the TfidfVectorizer

from scikit-learn to convert the preprocessed

text data into a numerical representation using

the TF-IDF scheme. This technique calculates

the importance of each word in the dataset

based on its frequency in a specific document

and across all documents. It generates a

matrix of numerical features that can be used

for training machine learning models.

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 16

B. Natural Language Toolkit (NLTK)

The Natural Language Toolkit is a

popular open-source library for working with

human language data in Python. It provides a

wide range of tools and resources for tasks

such as tokenizat ion, s temming,

lemmatization, part-of-speech tagging,

parsing, semantic reasoning, and more. NLTK

is widely used in the fields of natural

language processing (NLP) and computational

linguistics for research, education, and

building NLP applications [14].

Natural Language Processing (NLP) is a

field of study that focuses on enabling

computers to understand, interpret, and

generate human language. NLP techniques are

often combined with Machine Learning (ML)

algorithms to build models that can process

and analyze textual data.Here's a general

overview of how NLP works in Machine

Learning:

1. Data Preprocessing: The first step in NLP

is to preprocess the raw text data. This

includes tasks such as tokenization (splitting

text into individual words or tokens),

removing punctuation and stopwords

(commonly used words like “the,” “is,” etc.

that do not carry much meaning), and

performing other text normalization

techniques like stemming or lemmatization to

reduce words to their base forms.

2. Feature Extraction: Once the text data is

preprocessed, the next step is to convert the

textual information into numerical features

that ML models can understand. Common

feature extraction [3] techniques in NLP

include bag-of-words representation, TF-IDF

(Term Frequency-Inverse Document

Frequency) weighting, word embeddings

(such as Word2Vec or GloVe), or more

advanced techniques like transformer-based

models (e.g., BERT).

3. Model Training: With the numerical

features extracted from the text data, ML

models can be trained on labeled datasets for

various NLP tasks. For example, tasks like

sentiment analysis, text classification, named

entity recognition, machine translation,

question answering, etc. ML models such as

Naive Bayes, Support Vector Machines

(SVM), decision trees, random forests, or

deep learning models like recurrent neural

networks (RNNs), convolutional neural

networks (CNNs), or transformer models can

be used for training.

4. Model Evaluation and Tuning: Once the

model is trained, it needs to be evaluated to

assess its performance. This is typically done

using evaluation metrics specific to the NLP

task at hand. Common metrics include

accuracy, precision, recall, F1 score, or

perplexity, depending on the specific task. If

the model's performance is not satisfactory, it

may require further tuning or optimization by

adjusting hyperparameters, trying different

model architectures, or using more advanced

techniques like ensemble learning.

5. Deployment and Inference: After the

model has been trained and evaluated, it can

be deployed to make predictions on new,

unseen text data. This involves feeding the

raw text into the trained model, which

processes the input using the learned patterns

and provides predictions or outputs based on

the task it was trained for.

C. Feature Selection & Feature Extraction

Feature Selection: Feature selection is the

process of selecting a subset of features from

the original dataset that are most relevant to

the target variable or have the highest

predictive power. The main objective of

feature selection is to improve model

performance, reduce dimensionality, and

eliminate unnecessary or redundant features.

By selecting the most informative features,

we can reduce computational complexity and

enhance the interpretability of the model.

Feature Extraction: Transforming the

original features into a lower-dimensional

space while capturing essential information. It

aims to reduce redundancy and noise in the

data.

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 17

It's important to note that feature

extraction is different from feature selection.

While feature extraction creates new features,

feature selection focuses on selecting a subset

of the original features based on their

relevance or importance. Both methods aim to

improve model performance, reduce

computational complexity, and mitigate the

risk of overfitting.

D. Stopwords

Stopwords are common words that often

occur in a text but do not carry significant

meaning or contribute much to the overall

understanding of the text. In natural language

processing (NLP), stopwords are typically

removed during the data preprocessing stage

to reduce noise and improve the efficiency

and effectiveness of text analysis tasks.

Examples of stopwords in English

include words like “the,” “is,” “and,” “a,”

“an,” “in,” “on,” “of,” etc. These words are

frequently used in the language but do not

provide much context or information about

the specific topic or sentiment of the text. The

removal of stopwords is performed to:

Reduce Dimensionality: Stopwords are often

the most frequently occurring words in a

document, and their presence can result in a

high-dimensional feature space. Removing

stopwords helps reduce the dimensionality of

the dataset and focus on more meaningful

words.

Speed up Processing: By eliminating

stopwords, the processing time for NLP tasks

such as tokenization, parsing, and feature

extraction is reduced. This is because

stopwords are common and their removal

helps speed up the computations.

Improve Accuracy: In some NLP tasks, like

sentiment analysis or text classification,

stopwords do not contribute much to the

sentiment or classification decision. By

removing them, the model can focus on more

informative words and potentially improve

accuracy.

E. PorterStemmer

PorterStemmer: The Porter stemming

algorithm, also known as the Porter Stemmer,

is a widely used algorithm for stemming

English words. Stemming is the process of

reducing words to their base or root form,

called the stem, by removing suffixes or

inflections. The PorterStemmer is a rule-based

algorithm that applies a set of predefined rules

to transform words into their stems. For

example, words like “running,” “runs,” and

“ran” would all be stemmed to the base form

“run” using the PorterStemmer algorithm. It

helps to normalize words and reduce them to

a common form, which can be useful for tasks

like information retrieval, text mining, and

feature extraction in NLP.

Stemming: Stemming is the process of

reducing words to their base or root form,

called the stem. It involves removing suffixes

or inflections from words to obtain the core

meaning or essence of a word. The stem may

not always be a valid word, but it represents a

linguistic or morphological variant of the

original word. Stemming is commonly used in

NLP to handle variations of words and reduce

them to a common form for tasks like

indexing, search, information retrieval, and

text analysis. Different stemming algorithms,

such as the Porter Stemmer, Lancaster

Stemmer, and Snowball Stemmer, can be

applied based on the specific requirements of

the application or language.

F. TfidfVectorizer (Term Frequency-Inverse

Document Frequency)

TfidfVectorizer is a popular feature

extraction technique used in NLP to convert a

collection of raw text documents into a

numerical representation suitable for machine

learning algorithms. TF-IDF stands for Term

Frequency-Inverse Document Frequency. It

calculates a weight for each term (word) in

the document based on its frequency in the

document and its importance in the entire

corpus of documents. The TF-IDF value

increases with the frequency of the term in the

document but is offset by the frequency of the

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 18

term across the corpus. TfidfVectorizer

computes the TF-IDF values for each term in

the document collection and represents the

documents as vectors in a high-dimensional

space. This vector representation can then be

used as input for various machine learning

models. TfidfVectorizer is commonly used for

tasks such as text classification, clustering,

and information retrieval.

G. To improve the Execution Time of the

Gradient Boosting Classifier

To potentially improve the execution

time of the Gradient Boosting Classifier-

1. Reduce the Learning Rate: The learning

rate (learning_rate) controls the contribution

of each tree in the ensemble. By reducing the

learning rate, you can make the boosting

process more conservative, potentially

improving execution time. However,

decreasing the learning rate may require more

iterations to achieve comparable accuracy.

ModelGBC = GradientBoostingClassifier

(learning_rate=0.1, subsample=0.8) # Adjust

the learning_rate as needed

2. Limit the Maximum Depth of Trees:

Controlling the maximum depth of the trees

(max_depth) in the Gradient Boosting

Classifier can help reduce the execution time.

Setting a smaller value for max_depth

restricts the depth of individual decision trees,

resulting in faster training. However, be

cautious not to set it too low, as it may lead to

underfitting and lower accuracy.

ModelGBC = GradientBoostingClassifier

(max_depth=3, subsample=0.8) # Adjust the

max_depth as needed

3. Reduce the Number of Estimators:

Decrease the number of estimators

(n_estimators) in the Gradient Boosting

Classifier. The number of estimators

determines the number of boosting stages. By

reducing the number of boosting stages, the

training and prediction time can be reduced.

Experiment with different values to find a

balance between execution time and accuracy.

ModelGBC = GradientBoostingClassifier

(n_estimators=100, subsample=0.8) # Adjust

the n_estimators as needed

4. Parallelize Training: Enable parallel

training using multiple cores by setting the

n_jobs parameter to a higher value. This

allows the GradientBoostingClassifier to

utilize multiple cores during training,

potentially reducing the execution time.

ModelGBC = GradientBoostingClassifier

(n_estimators=100, subsample=0.8, n_jobs=-1)

Adjust n_jobs as needed

5. LightGBM: LightGBM is a high-

performance gradient boosting framework

developed by Microsoft. It is known for its

efficiency and faster execution time compared

to scikit-learn's implementation. You can

install LightGBM using pip install lightgbm

and then use it as follows:

import lightgbm as lgb

ModelGBC = lgb.LGBMClassif ier

(n_estimators=100)

Fit Model

start_timeGBC = time.time()

ModelGBC.fit(X_train, Y_train)

GBC_time = time.time() - start_timeGBC

6. XGBoost: XGBoost is another popular

gradient boosting library that provides

efficient and scalable implementation. You

can install XGBoost using pip install xgboost

and then use it as follows:

import xgboost as xgb

Mode lG BC = x gb .X G BClas s i f i e r

(n_estimators=100)

Fit Model

start_timeGBC = time.time()

ModelGBC.fit(X_train, Y_train)

GBC_time = time.time() - start_timeGBC

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 19

H. To improve the Execution Time of the

Random Forest Classifier

To improve the execution time of the

Random Forest Classifier the following

modifications can be considered:

1. Reduce the Number of Trees: The

execution time of the Random Forest

Classifier is directly proportional to the

number of trees in the forest. By reducing the

n_estimators parameter, you can decrease the

execution time. However, keep in mind that

reducing the number of trees may affect the

accuracy of the model.

E x a m p l e : M o d e l R F C =

RandomForestClassifier(n_estimators=100,

random_state=0)

2. Limit the Depth of Trees: Controlling the

maximum depth of the trees in the Random

Forest can help reduce the execution time. By

setting the max_depth parameter to a smaller

value, you can reduce the complexity of the

trees.

E x a m p l e : M o d e l R F C =

RandomForestClassifier(max_depth=10,

random_state=0)

3. Use Subset of Features: Random Forests

are capable of handling a large number of

features, but using a subset of features can

help reduce the execution time. You can set

the max_features parameter to a smaller

value, limiting the number of features

considered for each split.

E x a m p l e : M o d e l R F C =

RandomForestClassifier(max_features=10,

random_state=0)

4. Parallelize Training: Enable parallel

training using multiple cores by setting the

n_jobs parameter to a higher value. This

allows the RandomForestClassifier to utilize

multiple cores during training, potentially

reducing the execution time.

ModelRFC = RandomForestClassifier

(n_estimators=100, random_state=0, n_jobs=-

1) # Adjust n_jobs as needed

5. Consider Memory Optimization: If

memory usage is a concern, you can

experiment with reducing the memory

footprint by specifying the max_features

parameter. Setting max_features to a lower

value limits the number of features to

consider at each split, which can reduce

memory requirements and improve execution

time.

ModelRFC = RandomForestClassifier

(max_features=“sqrt”, random_state=0) #

Adjust max_features as needed

3. PROPOSED WORK AND

IMPLEMENTATION

1. Used Dataset

Data Source - https://www.kaggle.com/

competitions/fake-news/data

About Dataset

Content

train.csv: This file contains the training set of

news articles, where each row represents an

article and includes the following columns:

 id: A unique identifier for each

article.

 title: The headline or title of the news

article.

 author: The author or source of the

article.

 text: The main body of the article.

 label: The label indicating whether

the article is “fake” or “real.”

Outcome: Class variable (0 or 1)

Class Distribution:

1 represents: Unreliable / Fake News

0 represents: Reliable / Real News

train Data Set Rows / Features – 20800

Rows * 5 Columns

File –1, file Size - 94.1 MB, Type – csv

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 20

2. Platform and Methodology

IDE - Google Collaborator

Python – Python 3

Applied Binary Classification on Labeled Data

3. Implementation

A. Mounting the Drive

B. Importing the Dependencies

C. Downloading package stopwords to /

root/nltk_dat

D. Print Stopwords in English

E. Loading the Dataset to a Pandas

Dataframe

F. Find the Shape of the DataFrame

i. Print 1st 5 Rows of DataSet

ii. Number of Missing Values

G. Data Preprocessing

i. We can Drop these Missing

Values, Here Replacing the Null

Values with empty string

H. Feature Extraction

i. As Text Column may have Large

Text, which can take very much

time for processing. Thus, here we

are Not Using Text Column &

Using title & Author Column.

Merging the author name & title,

Creating new Column as Content.

I. Separating the Data and Label

 i. To Remove a Column from

Dataset axis = 1

 ii. To Remove a Row from Dataset

axis = 0

J. Fake News Classification Using Pie

Chart Where 0-Real News 1-Fake

News

K. Stemming

i. Stemming is the process of

reducing the words to its Root

Word.

ii. Example: actor, actress, acting -->

act

iii. re = Regular Expression

iv. sub = Substituting Some Values

v. ^ Excluding Everything (Digits/

Special Character/Punctuations All

will beReplaced by White Space)

Taking Only a--z and A--Z from

content Column

vi. Then Converting All Upper Case

Letters to Lower Case Letters

vii. Then Spliting it into List

viii. Stemming - Converting words into

Rootword Not in Stopwords

ix. Then Joining the Words

x. Getting Stemmed Content

L. Applying Stemming on content

i. No Upper-Case Letters & All the

Root Words are there

M. Separating the Features & Label

N. Converting Raw Text Data into

Numerical Value

i. TfidfVectorizer() Term Frequency

Inverse Document Frequency

ii. Fitting it On X Not on Y, y is

Already a Number

O. Splitting Data set into Training & Test

i. 20% of Total Data is Used as

Testing Data and 80% is Used for

Training

ii. stratify = Y Used?? 1: Fake News

0: Real News, If we Don’t Use

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 21

stratify = Y, Then Real & Fake

New Won’t be Segregated in

Equal Proportion after Splitting

Data as were in Total Data

P. Logistic Regression Model

i. Create Model

ii. Fit the Model on Training Data

iii. Calculate Model Execution Time

iv. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on

Training Data

v. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on Test

Data

vi. Plot the training and testing

accuracies

vii. Prepare Confusion Matrix to

Evaluate Model Performance

viii. Calculate the AUC-ROC score to

Evaluate Model Performance

ix. Manual Model Testing

Q. MultinomialNB Classifier

i. Create Model

ii. Fit the Model on Training Data

iii. Calculate Model Execution Time

iv. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on

Training Data

v. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on Test

Data

vi. Plot the training and testing

accuracies

vii. Prepare Confusion Matrix to

Evaluate Model Performance

viii. Calculate the AUC-ROC score to

Evaluate Model Performance

R. Decision Tree Classifier

i. Create Model

ii. Fit the Model on Training Data

iii. Calculate Model Execution Time

iv. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on

Training Data

v. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on Test

Data

vi. Plot the training and testing

accuracies

vii. Prepare Confusion Matrix to

Evaluate Model Performance

viii. Calculate the AUC-ROC score to

Evaluate Model Performance

S. Grdient Boosting Classifier

i. Create Model

ii. Fit the Model on Training Data

iii. Calculate Model Execution Time

iv. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on

Training Data

v. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on Test

Data

vi. Plot the training and testing

accuracies

vii. Prepare Confusion Matrix to

Evaluate Model Performance

viii. Calculate the AUC-ROC score to

Evaluate Model Performance

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 22

T. Random Forest Classifier

i. Create Model

ii. Fit the Model on Training Data

iii. Calculate Model Execution Time

iv. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on

Training Data

v. M o d e l E v a l u a t i o n -

Accuracy_score Prediction on Test

Data

vi. Plot the training and testing

accuracies

vii. Prepare Confusion Matrix to

Evaluate Model Performance

viii. Calculate the AUC-ROC score to

Evaluate Model Performance

4. RESULTS

A. Gradient Booster Classifier

Model Execution Time

Model Accuracy Percentage

Figure 1: Gradient Boosting Classifier Model

Execution Time & Accuracy Graph

B. Model Accuracy & Execution Time Comparisons

Table 1: Existing Vs Current Model Accuracy & Execution Time Comparison

Sr.

No.

Models Tested Test Data Accuracy Model Execution Time

(in Sec)

1 Logistic Regression Model 0.9790865384615385 0.32551074028015137

2 MultinomialNB Classifier 0.9550480769230769 0.01177072525024414

3 Decision Tree Classifier 0.9925480769230769 0.908332347869873

Proposed Work to Optimize Model Accuracy and Execution Time for Fake News Prediction

Grdient Boosting Classifier

1 GradientBoostingClassifier(max_depth=3) 0.9675480769230769 16.015048027038574

2 GradientBoostingClassifier(learning_rate=0.1, subsample=0.8) 0.965625 13.089359521865845

3 GradientBoostingClassifier(max_depth=3, subsample=0.8) 0.9649038461538462 13.114485502243042

4 GradientBoostingClassifier(n_estimators=100, subsample=0.8) 0.9629807692307693 13.107226848602295

5 LGBMClassifier(n_estimators=100) 0.9884615384615385 1.8740756511688232

6 XGBClassifier(n_estimators=100) 0.9889423076923077 5.1496899127960205

Random Forest Classifier

1 RandomForestClassifier(random_state=0) 0.9942307692307693 22.227541208267212

2 RandomForestClassifier(n_estimators=100, random_state=0) 0.9942307692307693 25.408351182937622

3 RandomForestClassifier(max_depth=10, random_state=0) 0.8730769230769231 1.450249195098877

4 RandomForestClassifier(n_estimators=100, random_state=0,

n_jobs=-1)

0.9942307692307693 15.483426809310913

5 RandomForestClassifier(max_features="sqrt", random_state=0) 0.9942307692307693 19.244366884231567

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 23

C. Random Forest Classifier

Model Execution Time

Model Accuracy Percentage

Figure 2: Random Forest Model Execution Time &

Accuracy Graph

5. CONCLUSION

Dataset: The dataset contains 20,800 records

with 5 features. It includes information about

real and fake news, with 1 representing fake

news and 0 representing real news.

Data Preprocessing Techniques: Several data

preprocessing techniques have been applied to

the dataset, including handling missing

values, feature extraction, removing columns,

stemming, and using TfidfVectorizer from

scikit-learn. These techniques are essential for

preparing the data before training the models.

Model Evaluation: Various classification

models have been tested on the preprocessed

dataset, including logistic regression,

multinomial Naive Bayes, decision tree

classifier, gradient boosting classifier, and

random forest classifier. The models have

been evaluated based on their test data

accuracy and execution time.

Accuracy and Execution Time: The accuracy

scores and execution times vary among the

tested models. It is observed that the Random

Forest Classifier generally achieves high

accuracy scores 99.42%, while the logistic

regression and multinomial Naive Bayes

models have shorter execution times. The

decision tree classifier also demonstrates high

accuracy, while the gradient boosting

classifier exhibits a trade-off between

accuracy and execution time.It can be

observed that the Execution Times of the

G r a d i e n t B o o s t i n g C l a s s i f i e r a n d

RandomForestClassifier models varied with

different parameter configurations.

By Changing the parameters resulted in

improved execution times. For example, in

the case of the GradientBoostingClassifier,

models 2, 3, and 4 had slightly lower

execution times compared to model 1.

Similarly, in the case of the

RandomForestClassifier, model 3 had a

significantly lower execution time compared

to models 1 and 2.

REFERNCES:

[1] Nihel Fatima Baarir, Abdelhamid

Djeffal, “Fake News detection Using

Machine Learning”, Workshop on

Human-Centric Smart Environments

for Health and Well-being (IHSH) |

978-1-6654-4084-4/21/$31.00 ©2021

I E E E | D O I : 1 0 . 1 1 0 9 /

IHSH51661.2021.9378748.

[2] Amit Neil Ramkissoon, Shareeda

Mohammed, “2020 International

Conference on Data Mining

Workshops (ICDMW) | 978-1-7281-

9012-9/20/$31.00 ©2020 IEEE |

D O I : 1 0 . 1 1 0 9 /

ICDMW51313.2020.00022”.

[3] Vanya Tiwari, Ruth G. Lennon,

Thomas Dowling. “Not Everything

You Read Is True!Fake News

Detection using Machine Learning

Algorithms”, 978-1-7281-9418-9/20/

$31.00 ©2020 IEEE.

[4] Arush Agarwal, Akhil Dixit, “Fake

News Detection: An Ensemble

Learning Approach”, Proceedings of

the International Conference on

Intelligent Computing and Control

Systems (ICICCS 2020), IEEE

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 24

Xplore Part Number:CFP20K74-

ART; ISBN: 978-1-7281-4876-2.

[5] Karishnu Poddar, Geraldine Bessie

Amali D, Umadevi K S, “Comparison

of Various Machine Learning Models

for Accurate Detection of Fake

News”, 978-1-5386-8190-9/19/

$31.00 ©2019 IEEE.

[6] Sherry Girgis, Eslam Amer,

Mahmoud Gadallah, “Deep Learning

Algorithms for Detecting Fake News

in Online Text”, 978-1-5386-5111-

7/18/$31.00 ©2018 IEEE.

[7] Akshay Jain, Amey Kasbe, “Fake

News Detection”, 2018 IEEE

International Students' Conference on

Electrical, Electronics and Computer

Sciences, 978-1-5386-2663-4/18/

$31.00 ©2018 IEEE.

[8] Iftikhar Ahmad, Muhammad Yousaf,

Suhail Yousaf, Muhammad Ovais

Ahmad, “Fake News Detection Using

Machine Learning Ensemble

Methods”, Hindawi Complexity,

Volume 2020, Article ID 8885861,

1 1 p a g e s , h t t p s : / /

doi.org/10.1155/2020/8885861.

[9] Ms. Ch. Uma Devi, R. Priyanka, B.S.

Priyanka, Ch. N.D.L. Nikhila, “Fake

News Detection Using Machine

Learning”, © 2019 JETIR April 2019,

Volume 6, Issue 4 www.jetir.org

(ISSN-2349-5162).

[10] P. Yogendra Prasad, Dr.G.

Nagalakshmi, P. Siva Kumar, “Fake

News Detection Using Machine

Learning”, Journal of Pharmaceutical

Negative Results, Volume 13, Issue

4, 2022.

[11] Z Khanam, B N Alwasel, H Sirafi1,

M Rashid, “Fake News Detection

U s i n g M a c h i n e L e a r n i n g

Approaches”, IOP Conf. Series:

Materials Science and Engineering,

1 0 9 9 (2 0 2 1) 0 1 2 0 4 0 ,

d o i : 1 0 . 1 0 8 8 / 1 7 5 7 -

899X/1099/1/012040.

[12] Juliane Köhler, Gautam Kishore

Shahi, Julia Maria Struß, Michael

Wiegand, Thomas Mandl, Mina

Schütz, “Overview of the CLEF-2022

Check That! Lab: Task 3on Fake

News Detection”, CLEF 2022 –

Conference and Labs of the

Evaluation Forum, September 5-8,

2022, Bologna, Italy.

[13] Khaled M. Fouad, Sahar F. Sabbeh,

Walaa Medhat, “Arabic Fake News

Detection Using Deep Learning”,

Computers, Materials & Continua,

DOI:10.32604/cmc.2022.021449.

[14] Puja Sunil Erande, Monika

Dhananjay Rokade, “Fake News

Prediction Using Machine Learning

for Social Media Dataset”, Volume 6,

Issue 4, April 2021, ISSN (Online)

2456-0774.

[15] Thasniya KP, Muneer V.K,

Mohamed Basheer K.P, Rizwana K

T., “Fake News Detection and

Prediction Using Machine Learning

Algorithms”, Thasniya KP et al/

(IJCSIT) International Journal of

Computer Science and Information

Technologies, Vol. 12 (3), 2021, 81-

85.

[16] Pinky Saikia Dutta, Meghasmita Das,

Sumedha Biswas, Mriganka Bora,

Sankar Swami Saikia, “Fake News

Prediction: A Survey”, International

Journal of Scientific Engineering and

Science, ISSN (Online): 2456-7361,

Volume 3, Issue 3, pp. 1-3, 2019.

[17] Ms. Alpana A. Borse, Dr. G. K.

Kharate, “Fake News Prediction

using Hierarchical Attention Network

and Hypergraph”, International

Conference on Contents, Computing

& Communication (ICCCC-2022).

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023 25

[18] G. Senthil Kumar, D. Ashok Kumar,

“A Comparative Study on Various

Machine Learning Algorithms for the

Prediction of Fake News Detections

Using Bring Feed New Data Sets”,

International Journal of Scientific

Research in Computer Science,

Engineering and Information

Technology, ISSN: 2456-3307

(www.ijsrcseit.com), doi: https://

doi.org/10.32628/CSEIT228691.

[19] Sudhakar Murugesan, Kaliyamurthie

K.P, “Estimation of Precision in Fake

News Detection Using Novel Bert

Algorithm and Comparison with

Random Forest”, Authorea. May 12,

2 0 2 2 , D O I : 1 0 . 2 2 5 4 1 /

au.165237518.82791368/v1.

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur

