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Abstract—The time period leading up to the 

2016 U.S. presidential election refers to the 

months and weeks preceding the election day, 

which was held on November 8, 2016. It was 

a politically charged period marked by 

intense campaigning, debates, and media 

coverage focused on the presidential 

candidates, their policies, and the overall 

state of the nation. The election primarily 

featured two major-party candidates, Donald 

Trump and Hillary Clinton, who represented 

the Republican and Democratic parties, 

respectively. The Source of the Dataset is 

Kaggle, the dataset used in this study was 

obtained from Kaggle and consists of 20,800 

rows and 5 columns. The columns in the 

dataset include “id,” “title,” “author,” 

“text,” and “label.” Each entry in the dataset 

is uniquely identified by the “id” column. The 

“title” column contains the headline or title 

of the news articles, while the “author” 

column provides information about the author 

or source of the articles. The main body of the 

articles is present in the “text” column, 

providing further details and information. The 

“label” column indicates that the dataset is 

used for a classification task, where each 

entry is assigned, a label representing a 

certain category or sentiment (e.g., true/false, 

reliable/unreliable, etc.). The Study presents 

the accuracy scores achieved by each model 

on the training and test data, as well as the 

execution times for each model. Several 

machine learning models were created and 

evaluated using this dataset, and their 

performance metrics were recorded. The 

models include Logistic Regression, 

MultinomialNB, DecisionTreeClassifier, 

GradientBoostingClassifier, LGBMClassifier, 

XGBClassifier, and Random Forest 

Classifier. The modified versions of the 

Gradient Boosting Classifier and Random 

Forest Classifier are also examined. Thus, 

findings provide insights into the performance 

of different machine learning models applied 

to the dataset. The accuracy scores represent 

the models' performance on both the training 

and test data, while the execution times 

indicate the time taken by each model to train 

and make predictions. 

Keywords:— Fake News Prediction, Machine 

Learning algorithm, NLTK, Logistic 

Regression, MultinomialNB, DecisionTree 

Classifier, GradientBoostingClassifier, 

Random Forest Classifier 

1. INTRODUCTION 

The dataset provided is from a Kaggle 

on fake news detection. The dataset aims to 

provide a collection of news articles labeled 

as either “fake” or “real” to facilitate the 

development and evaluation of machine 

learning models for fake news detection. It 

allows researchers to explore various machine 

learning techniques and develop strategies to 
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identify misleading or fabricated information 

in news articles. By using this dataset, 

researchers can perform partition over the 

Dataset, train machine learning models using 

the labeled training set and evaluate their 

performance on the test set. The competition 

framework encourages the development of 

effective techniques and models that can 

accurately classify news articles as “fake” or 

“real” based on their content.  

Machine Learning 

Machine learning is a field of artificial 

intelligence that focuses on the development 

of algorithms and models that enable 

computers to learn and make predictions or 

decisions without being explicitly 

programmed. It is concerned with creating 

systems that can automatically learn from and 

improve with experience. In machine 

learning, a model is trained on a dataset, 

which consists of input data and 

corresponding output labels or target values. 

The model learns patterns and relationships 

within the data to make predictions or take 

actions when presented with new, unseen 

data. There are several types of machines 

learning techniques, including: 

Supervised Learning: In this approach, the 

model is trained using labeled data, where the 

input data is paired with the correct output 

labels. The model learns to generalize from 

the training data and make predictions or 

classify new, unseen data based on the learned 

patterns. 

Unsupervised Learning: Here, the model is 

trained on unlabeled data, and its objective is 

to discover inherent patterns or structures 

within the data. Unsupervised learning 

techniques include clustering, dimensionality 

reduction, and anomaly detection. 

Semi-Supervised Learning: This is a 

combination of supervised and unsupervised 

learning. It uses a small amount of labeled 

data along with a larger amount of unlabeled 

data to train the model. The labeled data helps 

guide the learning process and improve the 

model’s performance. 

Reinforcement Learning: In reinforcement 

learning, an agent learns to make decisions 

and take actions in an environment to 

maximize a reward signal. The agent explores 

the environment, receives feedback in the 

form of rewards or penalties, and adjusts its 

actions accordingly to optimize its 

performance. Machine learning can be 

utilized for fake news detection by leveraging 

the patterns and characteristics present in both 

fake and genuine news articles.  

A. Logistic Regression 

Logistic regression is a widely used 

algorithm in machine learning for tackling 

binary classification problems. It is a 

supervised learning algorithm that aims to 

predict the probability of an input belonging 

to a specific class. Contrary to its name, 

logistic regression is primarily employed for 

classification tasks rather than regression. 

The fundamental concept behind 

logistic regression is to establish a 

relationship between the input variables 

(features) and the probability of the target 

variable (class label) assuming a particular 

value. The output of logistic regression is a 

probability value ranging from 0 to 1, which 

indicates the likelihood of the input belonging 

to the positive class. 

B. MultinomialNB 

The Multinomial Naive Bayes 

(MultinomialNB) classifier is primarily 

designed for text classification tasks with 

discrete features. However, it can also be used 

for binary classification tasks by converting 

the binary labels into two distinct classes. The 

classifier is based on the Naive Bayes 

principle, which assumes that the features are 

conditionally independent given the class. 

MultinomialNB works for binary 

classification: 

C. Decision Tree Classifier 

A Decision Tree Classifier for fake 

Optimizing Model Accuracy and Execution Time for Fake News Prediction using Machine Learning Algorithms 

Author(s) : Deepali Rosta, Swati Soni | TIET, Jabalpur  



 

International Journal of Modern Engineering & Management Research | Vol 11 | Issue 2 | June 2023  14  

news prediction is a machine learning 

algorithm that uses a decision tree model to 

classify news articles as either fake or 

genuine. The algorithm learns from a labeled 

dataset of news articles, where each article is 

labeled with its corresponding class (fake or 

genuine). The decision tree model represents 

a flowchart-like structure where each internal 

node corresponds to a feature or attribute, and 

each leaf node represents a predicted class 

(fake or genuine). 

The Decision Tree Classifier works by 

recursively splitting the dataset based on the 

selected features and splitting criteria to create 

a tree-like structure. The splitting criteria are 

chosen to maximize the homogeneity or 

purity of the resulting subsets. The algorithm 

determines the most informative features that 

can effectively separate fake and genuine 

news.The Decision Tree Classifier is a 

popular algorithm used for fake news 

prediction. 

D. Random Forest Classifier 

Random Forest Classifier is an 

ensemble learning algorithm that combines 

multiple decision trees tomake predictions. It 

is widely used for binary classification tasks. 

Here's how it works: 

1. Data preparation: First, you need to 

prepare your data by splitting it into a feature 

matrix (X) and a target variable vector (y). 

The feature matrix contains the input features 

or attributes, while the target variable vector 

contains the corresponding binary labels (0 or 

1). 

2. Building Decision Trees: Random Forest 

Classifier creates a collection of decision 

trees. Each tree is trained on a random subset 

of the training data, known as a bootstrap 

sample. Additionally, at each node of the tree, 

only a random subset of features is considered 

for splitting. This process helps to introduce 

randomness and reduce overfitting. 

3. Growing Decision Trees: Each decision 

tree is grown by recursively partitioning the 

data based on the selected features. The splits 

are determined by finding the best feature and 

threshold that maximize the information gain 

or Gini impurity (a measure of node purity). 

The process continues until a stopping 

criterion is met, such as reaching the 

maximum depth of the tree or having a 

minimum number of samples in a leaf node. 

4. Voting for Predictions: Once all the 

decision trees are built, predictions are made 

by each tree individually. For binary 

classification, each tree votes for the class 

label (0 or 1) based on the majority class in its 

leaf node. The final prediction is determined 

by taking the majority vote of all the trees 

(mode of the predictions). 

5. Handling Missing Data: Random Forest 

Classifier can handle missing data effectively. 

When making predictions for a sample with 

missing values, the algorithm considers all 

available features and averages the 

predictions from the trees that do not rely on 

the missing feature. 

6. Evaluation and Tuning: After training the 

Random Forest Classifier, you can evaluate 

its performance on a separate validation or 

test set. Common evaluation metrics for 

binary classification include accuracy, 

precision, recall, and F1 score. If necessary, 

you can adjust the hyperparameters of the 

Random Forest, such as the number of trees, 

the maximum depth of each tree, or the 

number of features considered at each split, to 

improve its performance. 

Random Forest Classifier is known for 

its robustness, scalability, and ability to 

handle high-dimensional data. It can handle 

both numerical and categorical features and 

provides estimates of feature importance, 

allowing you to analyze the contribution of 

each feature in the classification process. 

E. Gradient Boosting Classifier 

Gradient Boosting Classifier is an 

ensemble machine learning algorithm that is 

widely used for fake news prediction. It works 
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by combining multiple weak models, usually 

decision trees, to create a strong predictive 

model. Here's a high-level concept of how 

Gradient Boosting Classifier works for fake 

news prediction: 

Data Preparation: Prepare a labeled dataset 

of news articles, where each article is labeled 

as either fake or genuine. Split the dataset into 

input features (X) and labels (Y). 

Initialization: Initially, the Gradient Boosting 

Classifier creates a weak model, such as a 

decision tree, to make predictions. The weak 

model is assigned equal weight to all 

instances in the dataset. 

Predictions and Residuals: The weak model 

is used to make predictions on the dataset. 

The difference between the predicted values 

and the actual labels (residuals) is calculated. 

Building the Ensemble: A new weak model, 

typically another decision tree, is created to 

predict the residuals. This model is trained on 

the residuals rather than the original labels. 

The goal is to capture the patterns in the 

residuals that were not captured by the 

previous model. 

Weighted Voting: The predictions from all 

the weak models are combined using 

weighted voting. The weight assigned to each 

model is determined by its performance in 

minimizing the residuals. Models that 

contribute more to reducing the overall error 

are assigned higher weights. 

Iterative Training: Steps 3 to 5 are repeated 

iteratively. In each iteration, a new weak 

model is trained to predict the residuals of the 

previous ensemble. The ensemble is updated 

by adding the new model with an updated set 

of weights. 

Final Prediction: The final prediction is 

obtained by summing the predictions from all 

the weak models in the ensemble, considering 

their respective weights. The resulting value 

is typically transformed using a threshold to 

classify the news articles as fake or genuine. 

2. RELATED WORK 

A. Data Preprocessing 

The data preprocessing tasks 

performed on the fake real news 

prediction dataset include: 

1. Handling Missing Values: The code 

replaces missing values in the dataset, 

specifically in the text column, with an empty 

string. This ensures that the subsequent 

processing steps can handle the data properly. 

2. Feature Extraction: Instead of using the 

entire text column, the code merges the title 

and author columns to create a new column 

called “Content.” This step aims to reduce the 

text size and processing time by focusing on 

specific information that may be relevant for 

the classification task. 

3. Removing a Column: The code removes a 

column, likely the original text column, from 

the dataset. This step eliminates unnecessary 

features that are not used in the subsequent 

modeling process. 

4. Stemming: Stemming is applied to the 

content column to reduce words to their root 

forms. The code uses regular expressions to 

remove digits, special characters, and 

punctuations. It then converts uppercase 

letters to lowercase, splits the text into a list of 

words, applies stemming to each word 

(excluding stopwords), and finally joins the 

stemmed words. This process helps to 

normalize the text data and reduce the 

vocabulary size. 

5. Converting Raw Text Data into Numerical 

Value: The code uses the TfidfVectorizer 

from scikit-learn to convert the preprocessed 

text data into a numerical representation using 

the TF-IDF scheme. This technique calculates 

the importance of each word in the dataset 

based on its frequency in a specific document 

and across all documents. It generates a 

matrix of numerical features that can be used 

for training machine learning models. 
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B. Natural Language Toolkit (NLTK) 

The Natural Language Toolkit is a 

popular open-source library for working with 

human language data in Python. It provides a 

wide range of tools and resources for tasks 

such as  tokenizat ion,  s temming, 

lemmatization, part-of-speech tagging, 

parsing, semantic reasoning, and more. NLTK 

is widely used in the fields of natural 

language processing (NLP) and computational 

linguistics for research, education, and 

building NLP applications [14]. 

Natural Language Processing (NLP) is a 

field of study that focuses on enabling 

computers to understand, interpret, and 

generate human language. NLP techniques are 

often combined with Machine Learning (ML) 

algorithms to build models that can process 

and analyze textual data.Here's a general 

overview of how NLP works in Machine 

Learning: 

1. Data Preprocessing: The first step in NLP 

is to preprocess the raw text data. This 

includes tasks such as tokenization (splitting 

text into individual words or tokens), 

removing punctuation and stopwords 

(commonly used words like “the,” “is,” etc. 

that do not carry much meaning), and 

performing other text normalization 

techniques like stemming or lemmatization to 

reduce words to their base forms. 

2. Feature Extraction: Once the text data is 

preprocessed, the next step is to convert the 

textual information into numerical features 

that ML models can understand. Common 

feature extraction [3] techniques in NLP 

include bag-of-words representation, TF-IDF 

(Term Frequency-Inverse Document 

Frequency) weighting, word embeddings 

(such as Word2Vec or GloVe), or more 

advanced techniques like transformer-based 

models (e.g., BERT). 

3. Model Training: With the numerical 

features extracted from the text data, ML 

models can be trained on labeled datasets for 

various NLP tasks. For example, tasks like 

sentiment analysis, text classification, named 

entity recognition, machine translation, 

question answering, etc. ML models such as 

Naive Bayes, Support Vector Machines 

(SVM), decision trees, random forests, or 

deep learning models like recurrent neural 

networks (RNNs), convolutional neural 

networks (CNNs), or transformer models can 

be used for training. 

4. Model Evaluation and Tuning: Once the 

model is trained, it needs to be evaluated to 

assess its performance. This is typically done 

using evaluation metrics specific to the NLP 

task at hand. Common metrics include 

accuracy, precision, recall, F1 score, or 

perplexity, depending on the specific task. If 

the model's performance is not satisfactory, it 

may require further tuning or optimization by 

adjusting hyperparameters, trying different 

model architectures, or using more advanced 

techniques like ensemble learning. 

5. Deployment and Inference: After the 

model has been trained and evaluated, it can 

be deployed to make predictions on new, 

unseen text data. This involves feeding the 

raw text into the trained model, which 

processes the input using the learned patterns 

and provides predictions or outputs based on 

the task it was trained for. 

C. Feature Selection & Feature Extraction 

Feature Selection: Feature selection is the 

process of selecting a subset of features from 

the original dataset that are most relevant to 

the target variable or have the highest 

predictive power. The main objective of 

feature selection is to improve model 

performance, reduce dimensionality, and 

eliminate unnecessary or redundant features. 

By selecting the most informative features, 

we can reduce computational complexity and 

enhance the interpretability of the model. 

Feature Extraction: Transforming the 

original features into a lower-dimensional 

space while capturing essential information. It 

aims to reduce redundancy and noise in the 

data. 
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It's important to note that feature 

extraction is different from feature selection. 

While feature extraction creates new features, 

feature selection focuses on selecting a subset 

of the original features based on their 

relevance or importance. Both methods aim to 

improve model performance, reduce 

computational complexity, and mitigate the 

risk of overfitting. 

D. Stopwords 

Stopwords are common words that often 

occur in a text but do not carry significant 

meaning or contribute much to the overall 

understanding of the text. In natural language 

processing (NLP), stopwords are typically 

removed during the data preprocessing stage 

to reduce noise and improve the efficiency 

and effectiveness of text analysis tasks. 

Examples of stopwords in English 

include words like “the,” “is,” “and,” “a,” 

“an,” “in,” “on,” “of,” etc. These words are 

frequently used in the language but do not 

provide much context or information about 

the specific topic or sentiment of the text. The 

removal of stopwords is performed to: 

Reduce Dimensionality: Stopwords are often 

the most frequently occurring words in a 

document, and their presence can result in a 

high-dimensional feature space. Removing 

stopwords helps reduce the dimensionality of 

the dataset and focus on more meaningful 

words. 

Speed up Processing: By eliminating 

stopwords, the processing time for NLP tasks 

such as tokenization, parsing, and feature 

extraction is reduced. This is because 

stopwords are common and their removal 

helps speed up the computations. 

Improve Accuracy: In some NLP tasks, like 

sentiment analysis or text classification, 

stopwords do not contribute much to the 

sentiment or classification decision. By 

removing them, the model can focus on more 

informative words and potentially improve 

accuracy. 

E. PorterStemmer 

PorterStemmer: The Porter stemming 

algorithm, also known as the Porter Stemmer, 

is a widely used algorithm for stemming 

English words. Stemming is the process of 

reducing words to their base or root form, 

called the stem, by removing suffixes or 

inflections. The PorterStemmer is a rule-based 

algorithm that applies a set of predefined rules 

to transform words into their stems. For 

example, words like “running,” “runs,” and 

“ran” would all be stemmed to the base form 

“run” using the PorterStemmer algorithm. It 

helps to normalize words and reduce them to 

a common form, which can be useful for tasks 

like information retrieval, text mining, and 

feature extraction in NLP. 

Stemming: Stemming is the process of 

reducing words to their base or root form, 

called the stem. It involves removing suffixes 

or inflections from words to obtain the core 

meaning or essence of a word. The stem may 

not always be a valid word, but it represents a 

linguistic or morphological variant of the 

original word. Stemming is commonly used in 

NLP to handle variations of words and reduce 

them to a common form for tasks like 

indexing, search, information retrieval, and 

text analysis. Different stemming algorithms, 

such as the Porter Stemmer, Lancaster 

Stemmer, and Snowball Stemmer, can be 

applied based on the specific requirements of 

the application or language. 

F. TfidfVectorizer (Term Frequency-Inverse 

Document Frequency) 

TfidfVectorizer is a popular feature 

extraction technique used in NLP to convert a 

collection of raw text documents into a 

numerical representation suitable for machine 

learning algorithms. TF-IDF stands for Term 

Frequency-Inverse Document Frequency. It 

calculates a weight for each term (word) in 

the document based on its frequency in the 

document and its importance in the entire 

corpus of documents. The TF-IDF value 

increases with the frequency of the term in the 

document but is offset by the frequency of the 
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term across the corpus. TfidfVectorizer 

computes the TF-IDF values for each term in 

the document collection and represents the 

documents as vectors in a high-dimensional 

space. This vector representation can then be 

used as input for various machine learning 

models. TfidfVectorizer is commonly used for 

tasks such as text classification, clustering, 

and information retrieval. 

G. To improve the Execution Time of the 

Gradient Boosting Classifier 

To potentially improve the execution 

time of the Gradient Boosting Classifier- 

1. Reduce the Learning Rate: The learning 

rate (learning_rate) controls the contribution 

of each tree in the ensemble. By reducing the 

learning rate, you can make the boosting 

process more conservative, potentially 

improving execution time. However, 

decreasing the learning rate may require more 

iterations to achieve comparable accuracy. 

ModelGBC = GradientBoostingClassifier

(learning_rate=0.1, subsample=0.8) # Adjust 

the learning_rate as needed 

2. Limit the Maximum Depth of Trees: 

Controlling the maximum depth of the trees 

(max_depth) in the Gradient Boosting 

Classifier can help reduce the execution time. 

Setting a smaller value for max_depth 

restricts the depth of individual decision trees, 

resulting in faster training. However, be 

cautious not to set it too low, as it may lead to 

underfitting and lower accuracy. 

ModelGBC = GradientBoostingClassifier

(max_depth=3, subsample=0.8) # Adjust the 

max_depth as needed 

3. Reduce the Number of Estimators: 

Decrease the number of estimators 

(n_estimators) in the Gradient Boosting 

Classifier. The number of estimators 

determines the number of boosting stages. By 

reducing the number of boosting stages, the 

training and prediction time can be reduced. 

Experiment with different values to find a 

balance between execution time and accuracy. 

ModelGBC = GradientBoostingClassifier

(n_estimators=100, subsample=0.8) # Adjust 

the n_estimators as needed 

4. Parallelize Training: Enable parallel 

training using multiple cores by setting the 

n_jobs parameter to a higher value. This 

allows the GradientBoostingClassifier to 

utilize multiple cores during training, 

potentially reducing the execution time. 

ModelGBC = GradientBoostingClassifier

(n_estimators=100, subsample=0.8, n_jobs=-1) 

# Adjust n_jobs as needed 

5. LightGBM: LightGBM is a high-

performance gradient boosting framework 

developed by Microsoft. It is known for its 

efficiency and faster execution time compared 

to scikit-learn's implementation. You can 

install LightGBM using pip install lightgbm 

and then use it as follows: 

import lightgbm as lgb 

ModelGBC = lgb.LGBMClassif ier

(n_estimators=100) 

# Fit Model 

start_timeGBC = time.time() 

ModelGBC.fit(X_train, Y_train) 

GBC_time = time.time() - start_timeGBC 

6. XGBoost: XGBoost is another popular 

gradient boosting library that provides 

efficient and scalable implementation. You 

can install XGBoost using pip install xgboost 

and then use it as follows: 

import xgboost as xgb 

Mode lG BC =  x gb .X G BClas s i f i e r

(n_estimators=100) 

# Fit Model 

start_timeGBC = time.time() 

ModelGBC.fit(X_train, Y_train) 

GBC_time = time.time() - start_timeGBC 
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H. To improve the Execution Time of the 

Random Forest Classifier 

To improve the execution time of the 

Random Forest Classifier the following 

modifications can be considered: 

1. Reduce the Number of Trees: The 

execution time of the Random Forest 

Classifier is directly proportional to the 

number of trees in the forest. By reducing the 

n_estimators parameter, you can decrease the 

execution time. However, keep in mind that 

reducing the number of trees may affect the 

accuracy of the model. 

E x a m p l e :  M o d e l R F C  = 

RandomForestClassifier(n_estimators=100, 

random_state=0) 

2. Limit the Depth of Trees: Controlling the 

maximum depth of the trees in the Random 

Forest can help reduce the execution time. By 

setting the max_depth parameter to a smaller 

value, you can reduce the complexity of the 

trees. 

E x a m p l e :  M o d e l R F C  = 

RandomForestClassifier(max_depth=10, 

random_state=0) 

3. Use Subset of Features: Random Forests 

are capable of handling a large number of 

features, but using a subset of features can 

help reduce the execution time. You can set 

the max_features parameter to a smaller 

value, limiting the number of features 

considered for each split. 

E x a m p l e :  M o d e l R F C  = 

RandomForestClassifier(max_features=10, 

random_state=0) 

4. Parallelize Training: Enable parallel 

training using multiple cores by setting the 

n_jobs parameter to a higher value. This 

allows the RandomForestClassifier to utilize 

multiple cores during training, potentially 

reducing the execution time. 

ModelRFC = RandomForestClassifier

(n_estimators=100, random_state=0, n_jobs=-

1) # Adjust n_jobs as needed 

5. Consider Memory Optimization: If 

memory usage is a concern, you can 

experiment with reducing the memory 

footprint by specifying the max_features 

parameter. Setting max_features to a lower 

value limits the number of features to 

consider at each split, which can reduce 

memory requirements and improve execution 

time. 

ModelRFC = RandomForestClassifier

(max_features=“sqrt”, random_state=0) # 

Adjust max_features as needed 

3. PROPOSED WORK AND 

IMPLEMENTATION 

1. Used Dataset 

Data Source - https://www.kaggle.com/

competitions/fake-news/data 

About Dataset 

Content 

train.csv: This file contains the training set of 

news articles, where each row represents an 

article and includes the following columns: 

 id: A unique identifier for each 

article. 

 title: The headline or title of the news 

article. 

 author: The author or source of the 

article. 

 text: The main body of the article. 

 label: The label indicating whether 

the article is “fake” or “real.” 

Outcome: Class variable (0 or 1)  

Class Distribution:  

1 represents: Unreliable / Fake News 

0 represents: Reliable / Real News 

train Data Set Rows / Features – 20800 

Rows * 5 Columns 

File –1, file Size - 94.1 MB, Type – csv 
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2. Platform and Methodology  

IDE - Google Collaborator 

Python – Python 3 

Applied Binary Classification on Labeled Data 

3. Implementation 

A. Mounting the Drive 

B. Importing the Dependencies 

C. Downloading package stopwords to /

root/nltk_dat 

D. Print Stopwords in English 

E. Loading the Dataset to a Pandas 

Dataframe 

F. Find the Shape of the DataFrame 

i. Print 1st 5 Rows of DataSet 

ii. Number of Missing Values 

G. Data Preprocessing 

i. We can Drop these Missing 

Values, Here Replacing the Null 

Values with empty string 

H. Feature Extraction 

i. As Text Column may have Large 

Text, which can take very much 

time for processing. Thus, here we 

are Not Using Text Column & 

Using title & Author Column. 

Merging the author name & title, 

Creating new Column as Content. 

I. Separating the Data and Label 

 i. To Remove a Column from 

Dataset axis = 1 

 ii. To Remove a Row from Dataset 

axis = 0 

J. Fake News Classification Using Pie 

Chart Where 0-Real News 1-Fake 

News  

K. Stemming 

i. Stemming is the process of 

reducing the words to its Root 

Word.  

ii. Example: actor, actress, acting --> 

act 

iii. re = Regular Expression 

iv. sub = Substituting Some Values 

v. ^ Excluding Everything (Digits/

Special Character/Punctuations All 

will beReplaced by White Space) 

Taking Only a--z and A--Z from 

content Column 

vi. Then Converting All Upper Case 

Letters to Lower Case Letters 

vii. Then Spliting it into List 

viii. Stemming - Converting words into 

Rootword Not in Stopwords 

ix. Then Joining the Words 

x. Getting Stemmed Content 

L. Applying Stemming on content 

i. No Upper-Case Letters & All the 

Root Words are there 

M. Separating the Features & Label 

N. Converting Raw Text Data into 

Numerical Value 

i. TfidfVectorizer() Term Frequency 

Inverse Document Frequency 

ii. Fitting it On X Not on Y, y is 

Already a Number 

O. Splitting Data set into Training & Test 

i.  20% of Total Data is Used as 

Testing Data and 80% is Used for 

Training 

ii. stratify = Y Used?? 1: Fake News 

0: Real News, If we Don’t Use 
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stratify = Y, Then Real & Fake 

New Won’t be Segregated in 

Equal Proportion after Splitting 

Data as were in Total Data 

P. Logistic Regression Model 

i. Create Model  

ii. Fit the Model on Training Data 

iii. Calculate Model Execution Time 

iv. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on 

Training Data 

v. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on Test 

Data 

vi. Plot the training and testing 

accuracies 

vii. Prepare Confusion Matrix to 

Evaluate Model Performance 

viii. Calculate the AUC-ROC score to 

Evaluate Model Performance 

ix. Manual Model Testing 

Q. MultinomialNB Classifier 

i. Create Model  

ii. Fit the Model on Training Data 

iii. Calculate Model Execution Time 

iv. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on 

Training Data 

v. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on Test 

Data 

vi. Plot the training and testing 

accuracies 

vii. Prepare Confusion Matrix to 

Evaluate Model Performance 

viii. Calculate the AUC-ROC score to 

Evaluate Model Performance 

R. Decision Tree Classifier 

i. Create Model  

ii. Fit the Model on Training Data 

iii. Calculate Model Execution Time 

iv. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on 

Training Data 

v. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on Test 

Data 

vi. Plot the training and testing 

accuracies 

vii. Prepare Confusion Matrix to 

Evaluate Model Performance 

viii. Calculate the AUC-ROC score to 

Evaluate Model Performance 

S. Grdient Boosting Classifier 

i. Create Model  

ii. Fit the Model on Training Data 

iii. Calculate Model Execution Time 

iv. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on 

Training Data 

v. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on Test 

Data 

vi. Plot the training and testing 

accuracies 

vii. Prepare Confusion Matrix to 

Evaluate Model Performance 

viii. Calculate the AUC-ROC score to 

Evaluate Model Performance 
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T. Random Forest Classifier 

i. Create Model  

ii. Fit the Model on Training Data 

iii. Calculate Model Execution Time 

iv. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on 

Training Data 

v. M o d e l  E v a l u a t i o n  - 

Accuracy_score Prediction on Test 

Data 

vi. Plot the training and testing 

accuracies 

vii. Prepare Confusion Matrix to 

Evaluate Model Performance 

viii. Calculate the AUC-ROC score to 

Evaluate Model Performance 

4. RESULTS 

A. Gradient Booster Classifier 

Model Execution Time 

Model Accuracy Percentage 

 
Figure 1: Gradient Boosting Classifier Model 

Execution Time & Accuracy Graph 

B. Model Accuracy & Execution Time Comparisons 

Table 1: Existing Vs Current Model Accuracy & Execution Time Comparison 

 

Sr. 

No. 

Models Tested Test Data Accuracy Model Execution Time  

(in Sec) 

1 Logistic Regression Model 0.9790865384615385 0.32551074028015137 

2 MultinomialNB Classifier 0.9550480769230769 0.01177072525024414 

3 Decision Tree Classifier 0.9925480769230769 0.908332347869873 

Proposed Work to Optimize Model Accuracy and Execution Time for Fake News Prediction 

Grdient Boosting Classifier  

1 GradientBoostingClassifier(max_depth=3) 0.9675480769230769 16.015048027038574 

2 GradientBoostingClassifier(learning_rate=0.1, subsample=0.8) 0.965625 13.089359521865845 

3 GradientBoostingClassifier(max_depth=3, subsample=0.8) 0.9649038461538462 13.114485502243042 

4 GradientBoostingClassifier(n_estimators=100, subsample=0.8) 0.9629807692307693 13.107226848602295 

5 LGBMClassifier(n_estimators=100) 0.9884615384615385 1.8740756511688232 

6 XGBClassifier(n_estimators=100) 0.9889423076923077 5.1496899127960205 

Random Forest Classifier  

1 RandomForestClassifier(random_state=0) 0.9942307692307693 22.227541208267212 

2 RandomForestClassifier(n_estimators=100, random_state=0) 0.9942307692307693 25.408351182937622 

3 RandomForestClassifier(max_depth=10, random_state=0) 0.8730769230769231 1.450249195098877 

4 RandomForestClassifier(n_estimators=100, random_state=0, 

n_jobs=-1) 

0.9942307692307693 15.483426809310913 

5 RandomForestClassifier(max_features="sqrt", random_state=0) 0.9942307692307693 19.244366884231567 
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C. Random Forest Classifier 

Model Execution Time 

Model Accuracy Percentage 

 
Figure 2: Random Forest Model Execution Time & 

Accuracy Graph 

5. CONCLUSION 

Dataset: The dataset contains 20,800 records 

with 5 features. It includes information about 

real and fake news, with 1 representing fake 

news and 0 representing real news. 

Data Preprocessing Techniques: Several data 

preprocessing techniques have been applied to 

the dataset, including handling missing 

values, feature extraction, removing columns, 

stemming, and using TfidfVectorizer from 

scikit-learn. These techniques are essential for 

preparing the data before training the models. 

Model Evaluation: Various classification 

models have been tested on the preprocessed 

dataset, including logistic regression, 

multinomial Naive Bayes, decision tree 

classifier, gradient boosting classifier, and 

random forest classifier. The models have 

been evaluated based on their test data 

accuracy and execution time. 

Accuracy and Execution Time: The accuracy 

scores and execution times vary among the 

tested models. It is observed that the Random 

Forest Classifier generally achieves high 

accuracy scores 99.42%, while the logistic 

regression and multinomial Naive Bayes 

models have shorter execution times. The 

decision tree classifier also demonstrates high 

accuracy, while the gradient boosting 

classifier exhibits a trade-off between 

accuracy and execution time.It can be 

observed that the Execution Times of the 

G r a d i e n t B o o s t i n g C l a s s i f i e r  a n d 

RandomForestClassifier models varied with 

different parameter configurations. 

By Changing the parameters resulted in 

improved execution times. For example, in 

the case of the GradientBoostingClassifier, 

models 2, 3, and 4 had slightly lower 

execution times compared to model 1. 

Similarly,  in  the  case of  the 

RandomForestClassifier, model 3 had a 

significantly lower execution time compared 

to models 1 and 2. 
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